CENTRE OF PLANNING AND ECONOMIC RESEARCH

No 35

Measurement of Total Factor Productivity in the Manufacturing Sector of Greece, 1980-1991 by

> Z. GEORGANTA K. KOTSIS EMM. KOUNARIS

> > June 1994

Zoe Georganta Harvard University, Department of Economics, Cambridge MA, University of Macedonia, and Centre of Planning and Economic Research

Kostas Kotsis Research Fellow Centre of Planning and Economic Research Ministry of Finance

Emmanuel Kounaris Research Fellow Centre of Planning and Economic Research

Measurement of Total Factor Productivity in the Manufacturing Sector of Greece, 1980-1991

Copyright 1994

by the Centre of Planning and Economic Research 22, Hippokratous Street, 106 80 Athens, Greece

Opinions or value judgements expressed in this paper are those of the authors and do not necessarily represent those of the Centre of Planning and Economic Research.

CENTRE OF PLANNING AND ECONOMIC RESEARCH

The Centre of Planning and Economic Research (KEPE) was established as a research unit, under the title "Centre of Economic Research", in 1959. Its primary aims were the scientific study of the problems of the Greek economy, encouragement of economic research and cooperation with other scientific institutions.

In 1964, the Centre acquired its present name and organizational structure, with the following additional objectives: (a) The preparation of short, medium and long-term development plans, including plans for regional and territorial development and also public investment plans, in accordance with guidelines laid down by the Government. (b) The analysis of current developments in the Greek economy along with appropriate short-term and medium-term forecasts; also, the formulation of proposals for appropriate stabilization and development measures. (c) The further education of young economists, particularly in the fields of planning and economic development.

The Centre has been and is very active in all of the above fields, and carries out systematic basic research in the problems of the Greek economy, formulates draft development plans, analyses and forecasts short-term and medium-term developments, grants scholarships for post-graduate studies in economics and planning and organizes lectures and seminars.

Within the framework of these activities, the Centre also publishes studies from research carried out at the Centre, reports which are usually the result of collective work by groups of experts which are set up for the preparation of development programmes, and lectures given by specially invited distinguished scientists.

The Centre is in continuous contact with similar scientific institutions abroad and exchanges publications, views and information on current economic topics and methods of economic research, thus further contributing to the advancement of the science of economics in the country.

DISCUSSION PAPER SERIES

This series of Discussion Papers is designed to speed up the dissemination of research work prepared by the staff of KEPE and by its external collaborators with a view to subsequent publication. Timely comment and criticism for its improvement is appreciated.

ACKNOWLEDGEMENTS

We wish to thank our KEPE colleagues, especially Elias Migas and Stella Balfoussias, for their valuable comments on our work which was presented in a KEPE workshop on the 24th September 1993. We are also deeply indebted to Zvi Griliches, Ernst R. Berndt and the productivity group at the NBER, from whom we have greatly benefitted in seminar and private discussions.

Z. GEORGANTA K. KOTSIS EMM. KOUNARIS

CONTENTS

Page

1. Introduction	17
2. The Economic Theory of Productivity	20
3. Empirical Measurement of Productivity	24
4. The Estimates	36
5. Conclusions	43
REFERENCES	55

LIST OF TABLES

Page

TABLE 1.1:	Main Economic Variables of Manufacturing Activity, Large Scale, Greece 1980-1991	27
TABLE 2.1:	Summary Statistics of Gross Value of Production (gvp) in Thousand Drs., 1980-1991	29
TABLE 2.2:	Summary Statistics of Total Consumption Expenditures (totcon) in Thousand Drs., 1980-1991	30
TABLE 2.3:	Summary Statistics of Salaried Employees (sempl),Number of Bersons, 1980-1991	30
TABLE 2.4:	Summary Statistics of Wage Earners (wempl), Number of Persons, 1980-1991	31
TABLE 2.5:	Summary Statistics of Capital Stock (capst), in Million Drs., 1980-1991	31
TABLE 2.6:	Summary Statistics of Input Prices (pi) 1980 = 100, 1980-1991	32
TABLE 2.7:	Summary Statistics of Wholesale Prices (pw) 1980=100, 1980- 1991	32
TABLE 3.1:	Summary Statistics of TFP Chain-Linked Indices, at the Three-Digit ISIC Level	36
TABLE 3.2:	Summary Statistics of Output Chain-Linked Indices, at the Three-Digit ISIC Level	37
TABLE 3.3:	Summary Statistics of Input Chain-Linked Indices, at the Three-Digit ISIC Level	37
TABLE 3.4:	Summary Statistics of Labor Productivity Chain-Linked Indices, at the Three-Digit ISIC	38

Page

TABLE 3.5:	Summary Statistics of Intermediate Consumption Productivity Chain- Linked Indices, Three-Digit ISIC	38
TABLE 3.6:	Summary Statistics of Capital Productivity Chain-Linked Indices, Three- Digit ISIC Level	39
TABLE 3.7:	Summary Statistics of Capital Utilization, at the Three-Digit ISIC Level	39
TABLE 3.8:	Summary Statistics of the Shares of Labor (vI), Intermediate Consumption (vm), Capital (vk), at the Three-Digit ISIC Level	40
TABLE 4.1:	Number of Three-Digit Industries Showing an Increase in TFP Indices, 1980-1991	41

TABLES OF THE APPENDIX

TABLE A.1: Titles of ISIC Two - and Three - Digit Codes	47
TABLE A.2: Chained TFP Indices at the Three-Digit ISIC Level	51
TABLE A.3: TFP Chain-Linked Indices at the Two-Digit ISIC Level	52
TABLE A.4: Estimated Capital Stock at the Three-Digit ISIC Level, Mill.Drs	53

•

ABSTRACT

Despite their importance as economic performance indicators, productivity indices are not officially available in Greece for any economic sector. This paper uses the growth accounting framework to estimate partial and total factor productivity indices for the manufacturing sector during 1980-1991. The capacity utilization is estimated by assuming capital to be a quasi-fixed factor. The resulting data base appears for the first time in Greece. It is particularly useful for scientifically founded economic policy analysis. Among the most apparent policy suggestions of this data set may be the promotion of industries characterized as "dynamic", like the "Fats and Oils", and "Office Equipment".

1. Introduction

Recently, a lot of discussion is taking place not only in Greece, but also among its European partners, about the disappointing performance of the Greek economy and its possible relationship to productivity growth. Unfortunately, despite their importance as measures of economic performance, productivity indices are not officially available in Greece.¹ However, a falling rate of growth of productivity may imply a falling rate of growth of real per capita income with a resulting drop in the standard of living of the Greek population. It is also possible that phenomena, like the observed high and persistent inflation, as well as the chronic imbalances in the international payments of the country, are closely related to falling rates of productivity growth.

Productivity is broadly defined as the real output per unit of input, and it is expressed in the form of indices which measure the relative efficiency² that an economy or sector operates at a macro or micro level.

Productivity increase is one of the most important sources of growth of total output and income. Denison (1974) estimated that during 1929-1969 the 47% of the increase in the real national income of the U.S.A. was due to the increase of output per unit of input, and only the rest, 53%, was due to increases of real inputs. Moreover, regarding the increase of real national income per employee, Denison estimated that during the same period the share of output per unit of input was 79% and the rest was due to increases in the inputs of education and physical capital.³

In general, an increase in real income that comes from an increase in productivity implies an equivalent increase in the real compensation of the factors of production, whose real income can only change through an income redistribution. To make this explicit, let us assume that we have only one input, say labor, L. The ratio Q/L, where Q is real output, is

¹. The only available productivity estimates are published by IOBE (Research Institute of Greek Industries) on a quarterly basis at the 2-digit level of the International Standard Industrial Classification. The IOBE figures include only a labor productivity index which is defined as the ratio of the index of industrial production for manufacturing, compiled by the National Statistical Service of Greece, to an unweighted employment index.

². Within the context of production functions, in general, a production unit is efficient if it maximizes its output with a given set of inputs, or, if it minimizes its inputs producing a given output, taking into account cost considerations as well.

³. Other authors give somewhat different estimates of the contribution of productivity change to the growth of output. See the classic debate between Denison (1969) on the one hand, and Jorgenson and Griliches (1967, 1972) on the other. Also, see Christensen et al. (1980).

an index of labor productivity. This ratio implies that if productivity is constant, then output can increase only if we use more units of labor. All additional output will compensate the additional units of labor at the prevailing prices, and there will be no surplus left to raise the level of real factor compensation for the providers of either the original or the added units. By generalizing for more than one inputs, the above example implies that the providers of any one input could increase their real compensation only at the expense of the providers of some other input, or, in other words, by a redistribution of income. In contrast, if productivity is rising, then all factors' real income can increase without a necessary decrease in the real income of some other factors.

Thus, we can observe that prices may remain constant if we choose to increase real incomes through an increase in productivity. The reason is that the unit factor cost remains unchanged. For instance, if output increases by 5% while labor remains constant, and if the compensation of labor per work hour, w, increases also by 5%, then the unit labor cost, wL/Q, will remain constant. Also, a proportional increase in both, the hour compensation of labor and productivity, will not change the share of labor. In other words, keeping L constant, a 5% increase in both, Q and w, will result to the ratio 1.05wL/1.05Qp, where p is the price of output. These results remain the same independently of whether the increase in productivity takes place through a reduction in the work hours with output constant, or through a combination of an increase in output and a reduction in labor hours.

Consequently, the compensation of the factors' of production per unit of input, measured in current prices, can increase by the same rate as the productivity increase, without a necessary increase in the average price of output. In general, the nominal compensation of the factors' of production can increase faster than the increase in prices, or slower than the decrease in prices. The difference is proportional to the rate of change of productivity.

Summing-up, an increase in the compensation of labor proportional to the increasing trend of average productivity of labor has two interesting properties: (1) The increase in the labor compensation is not inflationary. (2) The increase in the compensation of labor does not necessarily change the distribution of output between labor and the other inputs.

Based on the above argument, governments may use the concept of average productivity as a guide for their incomes policy.¹ However, such an incomes policy presupposes that the share of labor in output remains constant. If it does not, then an incomes policy based on the average productivity would freeze the relative shares of the factors of production which normally change because of the changing economic conditions. Moreover, regarding this issue, interpretation of productivity indexes is crucial. Changes in

¹. The first major use of these properties of average labor-productivity change took place in the U.S.A. in the 1948 and 1950 collective bargaining agreements between the General Motors Corporation and the United Automobile Workers.

labor productivity may be considered as changes in the effort that workers are putting. However, such a measure of partial productivity is influenced by other factors as well, like changes in technology, in the capital/labor ratio, in the inputs of intermediate goods, in the rates of capacity utilization, and also by the interrelationships of these factors.

The necessity to have productivity officially measured is also dictated by the following two needs: (1) To measure and predict the potential GNP and the labor requirements. (2) To analyze the business cycle and design the proper monetary and fiscal policies.

The potential GNP is estimated on the basis of labor force growth, the average work hours per week, and the output per work hour in combination with some assumption about unemployment at a high level of employment. Regarding the analysis of business cycles, it is well known that the output per work hour decreases or increases at a lower rate when there is a downturn of economic activity. It has been observed that the output is reduced more than work hours during depression, because the production of any quantity of output requires a relatively bigger number of employees, especially during the first stages of a depression. In addition, some workers may be kept even without full time employment for various business reasons. During booms opposite effects are observed.

Taking into account the dissatisfactory situation of the Greek economy, as well as the pressing need for a scientifically based economic policy in Greece, it would be very useful to create a productivity data base, starting from the agricultural¹ and manufacturing sectors where the data availability is satisfactory. The purpose of this paper, which is based on our KEPE study on productivity measurement, is to present our estimates of total factor and partial productivity growth at the three-digit International Standard Industrial Classification level of the manufacturing sector of Greece for the time period 1980-1991. Our estimates constitute a data base, which appears for the first time in Greece, and which will be very useful for statistical, econometric, and policy analysis, not only within the national boundaries of Greece, but also within the European Union, of which Greece is a member. The methodological framework of our work is the growth accounting approach to productivity measurement, based on the translog production functions. The following section gives a brief but comprehensive presentation of the economic theory of productivity. The third section describes the empirical foundation of our work, while the fourth section presents and discusses the estimated total factor and partial productivity indices. Finally, the last section summarizes the results and concludes the paper.

¹. Zoe Georganta (1993) has estimated total factor and partial productivity indices for the agricultural sector of Greece for the time period 1974-1989.

2. The Economic Theory of Productivity

The conceptual framework for the measurement of productivity is found in the theory of production and cost. There are two approaches to productivity measurement¹: Growth accounting and econometric fitting of production functions. Both approaches have recently been summarized by Diewert (1980, 1989) and Morrison and Diewert (1990). Diewert (1976) derived the formal relationship between growth accounting and econometric fitting of production functions and econometric fitting of production functions and he showed that both approaches equivalent. He proved that under cost minimizing behavior, and by utilizing a translog mathematical formulation, the input-quantity or the input-price aggregate can be equivalently calculated by means of either the Tornquist index, or the translog production or cost function.

The growth accounting approach to productivity measurement starts with a production function of the following form:

$$\mathbf{Q} = \mathbf{F}(\mathbf{L}, \mathbf{K}, \mathbf{M}; \mathbf{t}) \tag{1}$$

where the volume of output, Q, is a function of the volume of services of the factors of production: labor (L), capital (K), intermediate inputs (M), and the level of productive efficiency which is a function of time, t.

The following assumptions are made: (1) F is logarithmically differentiable and exhibits constant returns to scale. According to Morrison (1986) the assumption of constant returns to scale is not crucial. However, Hauser and Yee (1992) argue that she is incorrect. (2) Each input is paid the value of its marginal product. (3) Technical change is Hicks neutral.² Then, equation (1) can be written as,

$$dlogY/dt = (\partial logY/\partial logL)(dlogL/dt) + (\partial logY/\partial logK)(dlogK/dt) + + (\partial logY/\partial logM)(dlogM/dt) + (\partial logY/\partial t)$$
(2)

If $d\log Y/dt = Y/Y$, $\partial \log Y/\partial t = P/P$, then, equation (2) can be expressed as,

¹. Recently, a group of researchers argue that productivity growth is an unbiased estimate only if the estimation procedure takes explicit account of the change in efficiency in the Farrell (1957) sense. See Grosskopf (1993).

². Hicks neutral advance requires an unchanged ratio of marginal products when factor proportions are constant. For a recent comprehensive overview of definitions of neutral technical change, see Fare and Chambers (1991).

P/P = Y/Y - an elasticity weighted aggregate input growth

Equation (3) measures Total Factor Productivity (TFP) growth. Thirtle and Bottomley (1992, pp.384-385) have shown that equation (3) is also the result of a production function derivation of a TFP growth index.

(3)

If p denotes the price of inputs, and q denotes the price of output, then, equation (3) can be written as,

$$P/P = p/p - q/q \tag{4}$$

Equation (4) implies the basic accounting identity:

$$\Sigma q Y = \Sigma p X \tag{5}$$

X represents aggregate input. The prices p and q correspond to the deflators used in order to transform values into real prices. Equ.(3) and (4) hold if we use the Divisia indexes, which are defined as:

$$Y/Y = \Sigma w_i Y_i/Y_i \quad X/X = \Sigma v_j X_j/X_j$$
(6)

and

$$q/q = \Sigma w_i q_i/q_i \quad p/p = \Sigma v_j p_j/p_j$$
(7)

The weights w_i , v_j are the relative shares of the ith output in total value of output, and the jth input in total value of input, respectively,

$$\mathbf{w}_{i} = \mathbf{q}_{i} \mathbf{Y}_{i} / \Sigma \mathbf{q}_{i} \mathbf{Y}_{i}, \quad \mathbf{v}_{j} = \mathbf{p}_{j} \mathbf{X}_{j} / \Sigma \mathbf{p}_{j} \mathbf{X}_{j}, \quad \Sigma \mathbf{w} = \Sigma \mathbf{v} = 1$$
(8)

The weights w and v are arithmetic averages of the relative shares in the two periods considered.

Divisia indices are the result of the following process: We differentiate equ.(5) with respect to time and we divide both sides by the corresponding total value. The result is the following equation:

$$Y_1(dq_1/dt) + q_1(dY_1/dt) + ... = X_1(dp_1/dt) + p_1(dX_1/dt) + ...$$
 (9)

By defining the growth rates as,

q = dq/dt, Y = dY/dt, p = dp/dt, X = dX/dt, q/q = dlnq/dt =

$$= \Delta q/q = (q_t - q_{t-1})/q_{t-1}, \qquad (10)$$

we get the following equation:

$$\Sigma w_{i}[q_{i}/q_{i} + Y_{i}/Y_{i}] = \Sigma v_{i}[p_{i}/p_{i} + X_{i}/X_{i}]$$
(11)

Consequently, the growth rate of TFP can be expressed as:

$$P/P = \Sigma w Y/Y - \Sigma v X/X$$
(12)

or

 $P/P = \Sigma w p/p - \Sigma v q/q$ (13)

Thus, Divisia price indices are dual to Divisia quantity indices.

Changes in TFP reflect the net saving in the real cost of production achieved over time, or, in other words, increases in productive efficiency in general. The main force behind increases in TFP (assuming comparable rates in capacity utilization) is cost-reducing technological progress. But other factors affect TFP as well. Among them are economies of scale, changes in the quality of resources, and inter-industry shifts in resources.

Partial productivity indices are obtained on the basis of.

equation (3) as a difference between Y/Y and the growth rate of only one input. Thus, the partial productivity indices are simply the average products of the corresponding factors, while the TFP index is often referred to as the residual, or the index of technical progress. Partial productivity indices show the savings that have been achieved over time in the use of each input per unit of output. Their changes reflect not only changes in productive efficiency, but also changes in factor substitutions that are the result of changes in relative factor prices.

According to the definitions of partial and total factor productivity, changes in partial productivity reflect movements along the production function, as the proportions of inputs change. They also reflect shifts in the production function which are due to technical change. For example, changes in the ratio of output to labor, Q/L, are influenced by changes in the factor substitution, as well as by changes in the productive efficiency, as this is measured by TFP. Thus, if total input is denoted by X, then the following equation holds for labor productivity:

$Q/L = Q/X \bullet X/L$

On the other hand, the difference between the rates of growth of labor input and labor-capital inputs combined reflects the rate of substitution of capital for labor. Also, the concept of changes in the ratio of output to labor depends on how we define each term of this ratio. Let us assume that the labor input is measured by non-differentiated hours worked, and the weights for the quantities of products are either factor costs (value added per unit of output), or prices. Then, the change in output per hour, measured for a class of products and industries, reflects relative shifts of production among products with different ratios of costs or prices to hours in the base period, as well as productivity changes in producing each of these products. Similarly, if there are relative shifts of production to less capital intensive industries (and thus more value added relative to capital input), then the aggregate output/capital ratio increases even though the requirements of capital per unit of output remain constant in all individual industries. If production shifts to industries with less energy requirements per unit of output, the effect of this shift increases the corresponding ratio of partial productivity.

The next section discusses problems relating to the empirical measurement of Greek manufacturing output and input indices. Also, it presents the data base used in this paper.

3. Empirical Measurement of Productivity

The two most often used indices of measuring TFP growth are Solow's (1957) geometric index and Kendrick's (1961) arithmetic measure. Solow's TFP change measure is based on the Cobb-Douglas production function, with constant returns to scale, autonomous and neutral technological change, and perfect competition. It is expressed as follows:

$$dP/P = dY/Y - (\sum v_j dX/X), \sum v_j = 1$$
 (15)

where d denotes time derivatives.

Kendrick measures TFP growth by using the Euler condition and a distribution equation derived from a homogeneous production function with constant elasticity of substitution and disembodied neutral technical change. It is written as

$$dP/P = \{(Y_1/Y_0)/[(\sum v_j X_1)/(\sum v_j X_0)]\}^{-1}$$
(16)

where the subscripts 1 and 0 refer to current and base period respectively. Levhari and al. (1966) have shown that the two measures are equivalent for small changes in the quantities of inputs and outputs.

For discrete data, formula (15) can be used to measure TFP and partial productivity indices by employing the Tornqvist-Theil index¹, which is defined as follows:

$$TFP = P/P = \sum w_{it} [\log Y_{it} - \log Y_{i,t-1}] - \sum v_{jt} [\log X_{jt} - \log X_{j,t-1}]$$
(17)

Formula (17) is the productivity growth index² which has been used by many authors

$$Pr_{F} \equiv Q_{F}/Q_{F}^{*}$$
 (18)
where, Q_{F} is the output index, and is given by $Q_{F} \equiv [Q_{L} Q_{P}]^{1/2}$, Q_{F}^{*} is the corresponding input index, and Q_{L} , Q_{P} denote Laspeyres and Paasche indices, respectively.

^{1.} The discrete and continuous index numbers are equal if relative shares are constant; otherwise an error is involved which depends on the variability of shares and the length of the time period. Divisia indices for discrete time satisfy the time reversal test, and as Theil (1967) has demonstrated, they also satisfy the factor reversal test.

^{2.} In a recent paper, Diewert (1992) proves that the Fisher ideal productivity index, Pr_F , described by the following formula (18), is superior to formula (17) from both viewpoints, the test approach to index numbers, and the economic approach to productivity indices which assumes optimizing behavior.

like Christensen and Jorgenson (1970), Jorgenson and Griliches (1967, 1972), the U.S. Bureau of Labor Statistics [see Mark and Waldorf (1983, p.15)], and more recently by Thirtle and Bottomley (1992) in agriculture.

Regarding the primary inputs of labor and capital, some methodological issues have traditionally been raised. Estimates, parametric or non-parametric, of factor productivity are sensitive to the methods used for measuring real factor inputs in general and the classification of the quantity and quality of each input into its various elements. Such issues have also been very controversial [see the classic debate between Jorgenson and Griliches (1967, 1972) on the one hand, and Denison (1969) on the other].

Starting with the labor input, the main issues involved in the case of the Greek manufacturing sector are age-sex composition, educational attainment, and training-skill qualifications of the labor force. Due to lack of such data for the Greek manufacturing sector, our labor input is not adjusted for characteristics relating to age-sex composition, as well as educational and skill qualities of the labor force. However, such an adjustment of our labor input, if we had the data to implement it, would involve conceptual problems, like the double character of education as both an investment and a consumption good, the quality of education, and the existence of externalities associated with education. All these issues make the quality adjustment of the labor input very difficult in general.

In relation to the capital input, the problems are too well-known to necessitate a long discussion. Data on manufacturing capital stock for Greece have been estimated by Skountzos and Mattheou (1991). They distinguish four capital stock categories: buildings, other construction works, machinery, and transport equipment. This capital stock data base has been obtained by the perpetual inventory method. It extends as back as 1950 for all sectors of the Greek economy. It is officially used by the Greek government, as well as by public and private research institutions and individual analysts. However, it only covers the manufacturing sector as a whole.

In measuring materials' inputs, the quality issue is focussed on whether the corresponding deflator used to obtain the real magnitude has been adjusted for quality change, so that it would reflect a "pure" price change. The same problem of quality adjustment exists for the output deflators as well. This paper does not consider the degree to which output and input deflators are adjusted for quality change.¹ However, the sensitivity of the results to partial adjustment for quality change may be important in areas where technological change has been rapid, as in the case of chemicals.

Our main data source is the Annual Industrial Survey (AIS) of the National Statistical Service of Greece (ESYE) at the three-digit ISIC (International Standard Industrial

¹. In Georganta (1992) the output deflators for the Greek manufacturing sector have been found to incorporate measurement errors, probably mostly attributable to partial adjustment for product-quality change of the corresponding price indices.

Classification) level. We have considered the "large scale" industry which includes manufacturing establishments with an annual average employment (aae) of 10 or more persons. The survey covers all manufacturing establishments of the country with an aae of 20 or more persons, and takes a sample of those manufacturing establishments with an aae of 10-19 persons.

The rest of our data sources are the wholesale and input price indices, both at the three-digit level, compiled by the ESYE. The wholesale prices include finished products of local industrial production for home consumption, and exported products of local industrial production. The input price indices correspond to the same three-digit industries as the wholesale price indices. They cover energy consumption, raw materials and intermediate products used in the production process. The classification of both wholesale and input price indices was adjusted to match the ISIC classification of the AIS.

The following table gives a picture of ten main economic variables of the whole manufacturing sector for the years 1980-1991.

TABLE	1	1
TUDUD		. 1

		Larg	ge Scale,	Greece 1980-1991			-
Var.	1980	1981	1982	1983	1984	1985	
F	8551	8564	8547	8533	8544	8433	
	4602	4608	4668	4760	4822	4826	
Е				361282		358219	
	56020	59860	58905	58430	58072	58444	
W	109357	135493	172591	198562	248704	294794	
	9849	12709	17170	20155	24423	29272	
GVP	827651	1055667	1182550	1442693	1832106	2263286	
	63134	81006	99781	120878	149635	190100	
С	569952	743666	829955	1015381	1303151	1622606	
	41969	53663	66653	81562	101272	126132	
I	63789	85399	80576	113367	102099	115624	
		4995		6173			
S	697848	889769	1005941	1212918	1556802	1908638	
	55720	70673	86462	105187	129543	163020	
PI	100.0	127.5	146.7	175.8	212.4	251.0	
PW	100.0	125.1	144.9		208.0	246.8	
Var.		5 1987		1989			aa%
F		8417			8370	8269	-0.0
		5 4844	4888	4871	4888	4890	0.6
E	351185	358294	353451	358763	353451	333674	-0.0
	58565		45000	64495	65888	65113	1.4
W	327061	372867	653105	546409	653104	735117	18.9
	33931	<i>41464</i> 3 2741615	78686	63456	78686	91492	22.2
GVP	2493778	3 2741615	4389539	3748602	4389539	4881198	17.5
		293386	537019	443130	537019	615799	23.0
С	1720165		2942547				16.9
	158263		367649	302989	367649	416402	23.2
I	134735		177533	220509	264465	276248	14.3
	7210			21491	30176	28794	19.7
S		5 2853467					17.6
	203485		452218	380172	458032		22.9
PI	257.		304.2	349.3			14.6
PW	285.3	1 308.9	340.7	386.8	446.7	519.0	16.1
Source: Annual Industrial Surveys, ESYE Note: The numbers in italics refer to establishments with an aae of 10-19 persons Notation F: Number of establishments C: Total consum., mill.drs.							
E:		persons emp		I: Gross	invest.,	mill.drs.	
W:		or remun.,			, mill.dr		
GVP: PI:	Gross valu Input pric	e of prod. es	, mill. dre		ual aver. esale pri		

Main Economic Variables of Manufacturing Activity, Large Scale, Greece 1980-1991

.

Table 1.1 shows that during 1980-1991 the number of establishments and employment is slightly decreasing for the Greek manufacturing sector considered as a whole. For those establishments employing 10-19 persons on average per annum (pa), employees' compensation in nominal terms has increased more than it has for the larger establishments, 22.2% average annual growth rate for the former and 18.9% pa on average for the manufacturing sector considered as a whole. Gross value of production, intermediate consumption, and sales have all increased by about 17%. Investment shows a lower record, 14.3% pa on average. In general, growth is higher for the smaller establishments. Intermediate input prices have increased by 14.6% and output prices have increased by 16.1% pa on average. It is noted that the inflation rate during 1980-1991, as measured by the consumer price index, was 19.7% pa on average.

In relation to capital stock, Skountzos and Mattheou (1991) data, as reported above, are only available for the manufacturing sector as a whole. We have obtained data at the three-digit ISIC level by the following procedure: For each year of the time period 1980-1991 we considered the sum of the fixed capital formation in buildings-structures, transport equipment and machinery-other equipment, reported in the AIS.¹ Let us denote this sum by s_{it} , where i refers to each three-digit industrial branch, and t is time, t = 1980, 1981,...,1991. Then, we consider Σs_{it} , which is the sum of fixed capital formation from 1974 up to current year. In other words, for the year 1980, Σs_{it} is the sum of fixed capital formation during the time period 1974-1980, for the year 1981 Σs_{it} is the sum of fixed capital formation during the time period 1974-1981, and so on. Next, we obtained the capital stock at the three-digit ISIC level as follows: For the year 1980 we distributed the capital stock figure, estimated by Skountzos and Mattheou (1991) for the year 1980, in proportion to each three-digit participation in the sum Σs_{it} for the year 1980. For the rest of the years, 1981-1991, the capital stock at the three-digit ISIC level was obtained by increasing the capital stock of any year by the growth rate of the sum of fixed capital formation, Σs_{it} , of the current year with respect to the previous year, taking the year 1980 as initial year.

The capital stock in constant prices was obtained by utilizing the implicit price deflators of Skountzos and Mattheou (1991) and assuming that they do not differentiate among the three-digit industries. This procedure has given very small differences between the capital stock for the whole manufacturing sector in this study and the Skountzos and Mattheou (1991) figures. The panel data on capital stock are presented in Table A.4 of the Appendix.

Tables 2.1 to 2.7 present summary statistics of our data at the three-digit ISIC level. As it is apparent in the above tables, our final number of industries is 96. There are

¹. For the years 1978 and 1979 there is no AIS.

all together 109 three-digit industries, but due to confidentiality issues (in cases that it is only one establishment reported) the following three-digit ISIC groups have been considered as one three-digit industry: 322 + 329,335 + 338 + 339,372 + 374 + 377,385 + 386 + 387 + 389,392 + 393,391 + 395 + 398. Also, industries 242 and 382 are not included in our final data set because of inconsistencies in the information reported. Table A.1 of the Appendix shows the two - and three - digit code titles of the respective industry groups and industries.

Tables 2.1 to 2.7 show that variation between the three-digit ISIC industries, as expressed by the coefficient of variation, cv, is very high for output, intermediate consumption, compensation of wage earners, and capital stock. During the whole period considered, 1980-1991, the cv is higher than one for these variables.

TABLE 2.1

Summary Statistics of Gross Value of Production (gvp) in Thousand Drs., 1980-1991

Variable	Obs	Mean	Std. Dev.	CV	Min	Max
gvp80 gvp81 gvp82 gvp83 gvp84 gvp85 gvp86 gvp86 gvp87 gvp88 gvp88 gvp89 gvp90	96 96 96 96 96 96 96 96 96 96 96	8586979 1.10e+07 1.23e+07 1.50e+07 1.90e+07 2.35e+07 2.59e+07 2.85e+07 3.30e+07 3.90e+07 4.56e+07	1.28e+07 1.88e+07 2.05e+07 2.51e+07 3.41e+07 4.44e+07 3.68e+07 3.90e+07 4.31e+07 5.12e+07 6.21e+07	1.49 1.71 1.67 1.67 1.79 1.89 1.42 1.37 1.31 1.31 1.36	114502 148363 170290 204493 224591 283599 327291 302310 328459 332448 412881	1.00e+08 1.63e+08 1.76e+08 2.11e+08 2.91e+08 3.88e+08 2.67e+08 2.72e+08 2.76e+08 3.38e+08 4.38e+08
gvp91	96	5.07e+07	6.71e+07	1.32	458293	4.64e+08

TABLE 2.2

Summary Statistics of Total Consumption Expenditures (totcon)	
in Thousand Drs., 1980-1991	

Variable	Obs	Mean	Std. Dev.	cv	Min	Max
totcon80	96	5929464	1.11e+07	1.87	53990	9.62e+07
totcon81	96	7736887	1.70e+07	2.20	74043	1.56e+08
totcon82	96	8636303	1.84e+07	2.13	71654	1.67e+08
totcon83	96	1.06e+07	2.23e+07	2.10	94703	2.00e+08
totcon84	96	1.36e+07	3.07e+07	2.26	106770	2.78e+08
totcon85	96	1.69e+07	4.01e+07	2.37	121162	3.68e+08
totcon86	96	1.79e+07	3.04e+07	1.70	131652	2.46e+08
totcon87	96	1.95e+07	3.15e+07	1.62	165506	2.48e+08
totcon88	96	2.22e+07	3.38e+07	1.52	165506	2.47e+08
totcon89	96	2.61e+07	4.04e+07	1.55	142781	2.98e+08
totcon90	96	3.06e+07	5.11e+07	1.67	205761	4.03e+08
totcon91	96	3.31e+07	5.12e+07	1.55	223009	3.77e+08

TABLE 2.3

Summary Statistics of Salaried Employees (sempl),

Number of Persons, 1980-1991

Variable	Obs	Mean	Std. Dev.	CV	Min	Max
semp180 ¦	96	1055.500	978.054	0.93	27	3847
semp181	96	1090.104	1048.285	0.96	19	4572
semp182	96	1110.313	1071.640	0.97	31	5065
semp183	96	1126.458	1110.890	0.99	25	5087
semp184	96	1157.146	1144.128	0.99	15	4780
semp185	96	1172.823	1183.458	1.01	11	4938
semp186	96	1186.167	1213.206	1.02	13	4928
semp187	96	1264.844	1310.500	1.04	10	5154
semp188	96	1303.719	1354.933	1.04	13	5581
semp189	96	1334.948	1384.825	1.04	14	5727
semp190	96	1346.125	1402.129	1.04	20	5319
empl91	96	3364.167	4509.478	1.34	103	35970

(empl91=sempl91+wempl91)

TABLE 2.4

Summary Statistics of Wage Earners (wempl), Number of Persons, 1980-1991

Variable	Obs	Mean	Std. Dev.	cv	Min	Max
wemp180 wemp181 wemp182 wemp183 wemp184 wemp185 wemp186	96 96 96 96 96 96 96 96	2785.135 2773.229 2619.375 2494.260 2464.115 2414.833 2344.906	4183.718 4263.165 4010.155 3827.573 3899.843 3898.155 3854.523	1.50 1.54 1.53 1.53 1.58 1.61 1.64	54 46 45 59 46 42 45	30215 30938 29427 28114 29025 29120 29414
wemp187 wemp188 wemp189 wemp190	96 96 96 96	2352.479 2305.208 2288.781 2222.510	4146.928 4128.343 4147.731 4044.484	1.76 1.79 1.81 1.82	42 48 35 34	33169 33873 34105 34127

TABLE 2.5 Summary Statistics of Capital Stock (capst), in Million Drs., 1980-1991

capst81968737.48312935.3011.4822.39781573.71capst829610808.32115673.6661.4523.34191536.40capst839613585.08320905.9801.5424.780121074.10capst849615926.49424296.9011.5325.858130525.58capst859618432.60627999.3311.5226.517155411.01capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23	Variable) Obs	Mean Std.	Dev. cv	Min	Max
capst829610808.32115673.6661.4523.34191536.40capst839613585.08320905.9801.5424.780121074.10capst849615926.49424296.9011.5325.858130525.58capst859618432.60627999.3311.5226.517155411.01capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23						63327.219
capst839613585.08320905.9801.5424.780121074.10capst849615926.49424296.9011.5325.858130525.58capst859618432.60627999.3311.5226.517155411.01capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23						
capst849615926.49424296.9011.5325.858130525.58capst859618432.60627999.3311.5226.517155411.01capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23						
capst859618432.60627999.3311.5226.517155411.01capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23					24.780	121074.109
capst869621135.46331109.2471.4754.779165446.64capst879624614.63935510.6071.4465.156196263.23	capst84	96 15926	.494 24296	.901 1.53	25.858	130525.586
capst87 96 24614.639 35510.607 1.44 65.156 196263.23	capst85	96 18432	.606 27999	.331 1.52	26.517	155411.016
	capst86	96 21135	.463 31109	.247 1.47	54.779	165446.641
	capst87	96 24614			65.156	196263.234
$capscoo_1 \qquad 50 20/40.225 40322.921 1.40 80.954 24/250.46$	capst88	3 96 28740	.225 40322	.921 1.40	80.954	247250.469
capst89 96 33860.341 46652.795 1.38 84.189 296074.81	capst89	96 33860	.341 46652	.795 1.38	84.189	296074.813
capst90 96 40039.243 54084.150 1.35 107.546 335199.75	capst90) 96 40039	.243 54084	.150 1.35	107.546	335199.750
capst91 96 46606.280 60007.296 1.29 167.284 353518.96	capst91	96 46606	.280 60007	.296 1.29	167.284	353518.969

TABLE 2.6 Summary Statistics on Input Prices (pi) 1980 = 100, 1980-1991

Variable	Obs	Mean	Std. Dev.	CV	Min	Max
pi80	96	100.000	0.000	0.00	100.000	100.000
pi81	96	121.532	8.101	0.07	91.600	146.000
pi82	96	139.409	11.552	0.08	89.500	176.200
p183	96	166.980	13.060	0.08	133.000	208.500
pi84	96	199.743	17.538	0.09	146.600	239.300
pi85	96	238.152	22.407	0.09	151.200	282.100
pi86	96	281.299	33.264	0.12	159.500	331.215
pi87	96	304.259	34.972	0.11	182.900	362.453
pi88	96	339.512	48.185	0.14	162.800	416.800
pi89	96	386.384	65.644	0.17	209.700	630.600
pi90	96	427.834	69.311	0.16	206.700	801.800
pi91	96	474.740	83.257	0.18	223.900	884.900

TABLE 2.7 Summary Statistics of Wholesale Prices (pw) 1980 = 100, 1980-1991

Variable	Obs	Mean	Std. Dev.	CV	Min	Max
pw80	96	100.000	0.000	0.00	100.000	100.000
pw81	96	123.230	7.883	0.06	96.700	145.448
pw82	96	144.191	13.028	0.09	112.810	178.579
pw83	96	174.278	18.392	0.11	121.830	232.246
pw84	96	205.095	22.006	0.11	136.420	249.671
pw85	96	242.034	27.614	0.11	138.640	297.730
pw86	96	292.474	36.467	0.12	174.700	373.462
pw87	96	319.937	44.015	0.14	198.580	425.490
pw88	96	357.372	54.906	0.15	209.180	465.365
pw89	96	405.198	71.604	0.18	200.900	566.089
pw90	96	459.946	85.642	0.19	266.580	742.088
pw91	96	533.298	108.353	0.20	299.990	866.625

<u>The Two- and Three-Digit ISIC Productivity Indices</u> <u>Capacity Utilization</u>

For the variables of this paper, formula (17) becomes,

$$TFP/TFP = Y/Y - v_{L}(L/L) - v_{M}(M/M) - v_{K}(K/K)$$
(19)

If subscripts 2 and 3 denote two-digit and three-digit ISIC respectively, we have:

$$Y_{3it}/Y_{3it} = (logY_{it}-logY_{i,t-1})$$
 (20)

$$Y_{2rt}/Y_{2rt} = w_{jit}(\log Y_{it} - \log Y_{j,t-1}), \ w_{jit} = [(gvp_{it}/\sum_{j=1}^{n} gvp_{jit}) + (gvp_{i,t-1} / \sum_{j=1}^{n} gvp_{ji,t-1})]/2$$
(21)

$$L_{3it}/L_{3it} = \{ [(s_{it}/\sum (s+w)_{it}) + (s_{i,t-1}/\sum (s+w)_{i,t-1})]/2 \} [log(se)_{it} - log(se)_{i,t-1}] + \\ + \{ [(w_{it}/\sum (s+w)_{it}) + (w_{i,t-1}/\sum (s+w)_{i,t-1})]/2 \} [log(we)_{it} - log(we)_{i,t-1}]$$
(22)

$$L_{2rt}/L_{2rt} = I_{jit}(L_{3it}/L_{3it}), \quad I_{jit} = \{[(se + we)_{it}/\sum (se + we)_{jit}] + [(se + we)_{j-1}/\sum (se + we)_{ji,t-1}]\}/2$$
(23)

$$M_{3it}/M_{3it} = [log(vtotcon)_{it}-log(vtotcon)_{i,t-1}]$$
(24)

$$M_{2rt}/M_{2rt} = m_{jit}[log(vtotcon)_{it}-log(vtotcon)_{i,t-1}],$$

$$m_{jit} = [(tot_{j=1}^{n}m_{jit}/\sum totcon_{jit}) + (totcon_{i,t-1}^{n}/\sum totcon_{ji,t-1})]/2$$
(25)

$$K_{3it}/K_{3it} = [log(vcapst)_{it}-log(vcapst)_{i,t-1}]$$
(26)

$$K_{2rt}/K_{2rt} = k_{jit}(K_{3it}/K_{3it}),$$

$$k_{jit} = [(capst_{ji}/\sum_{j=1}^{n} capst_{jit}) + (capst_{ji}t_{1})/\sum_{j=1}^{n} capst_{ji,t-1})]/2$$
(27)

where,

i : 201,...,399, three-digit industries

j: 1,...,n, n = number of three-digit industries included within each two-digit industry group

- $r: 20, 21, \dots, 39$, two-digit industry groups
- t:1980,...,1991
- s : compensation of salaried employees

t: 1980,...,1991

s : compensation of salaried employees w : compensation of wage earners se: Number of salaried employees we: Number of wage earners totcon : total intermediate consumption vtotcon: volume of total intermediate consumption capst : capital stock

vcapst : volume of capital stock

Any partial productivity index is estimated on the basis of equation (19) as a difference, Y/Y - X/X, where X is any of the three inputs, labor, intermediate consumption, and capital. It is easily observed that the above Divisia-Tornquist indices of output, input, TFP and partial productivity are chain-linked. For each year the current values are used as a base in estimating the rate of growth to the following year. The advantages of chained indices are thoroughly discussed in Diewert (1986).

The three-digit ISIC level capital stock series, which have been obtained as described above, have to be transformed into flows of capital services, since the production function is conventionally interpreted as a relationship between the flow of output and the flow of input services. One approach could be to assume that capital flows are proportional to stocks, so that the one is a perfect surrogate for the other. In such a case, capital utilization (ratio of flow to stock) is assumed to remain constant over time and, in particular, over the business cycle, which is an unrealistic assumption. Another approach is to multiply the estimated capital stock by an estimate of capital utilisation. This has been applied by various researchers, as Jorgenson and Griliches (1967, 1972), by considering the ratio of used energy to installed energy as a proxy for capacity utilisation. This proxy variable is not available for the Greek manufacturing sector.

Another approach to the capacity utilization problem, which has been followed in this paper, is to introduce into the analysis the distinction between the long-run and the short-run by assuming that capital is a quasi-fixed factor (fixed in the short-run and variable in the long-run).¹ Within this framework, capacity utilisation is defined as the ratio of actual output, Y,

¹. See Berndt and Fuss (1986) and Hulten (1986, 1990).

to capacity output, Y_0 . At capacity level of output Y_0 , the short-run and the long-run unit cost curves are at their minimum. Thus, it is assumed that $Y \neq Y_0$, leading to a gross quasirent or ex-post rental price, Z, realized from the capital stock when the other inputs are adjusted to meet fluctuations in demand. Z is thus the residual income accruing to the quasifixed stock (revenue minus payments to all variable inputs):

$$Z = (qY - pX^{\neq K})/KS$$
(28)

where q, p are prices for output and inputs (except for capital) respectively, K is capital input, and KS is capital stock. Berndt and Fuss (1986) showed that Z equals the value of the realized marginal product of capital in each period. Jorgenson and Griliches (1967) and Christensen and Jorgenson (1969) constructed such a measure, but they did not develop it theoretically as Berndt and Fuss (1986) did. For this paper, Z is non-parametrically estimated and the capital stock is transformed into a capital input argument by adjusting the corresponding factor shares. According to this approach, the weights v in equation (19) are defined as follows: By assuming constant returns to scale, we have,

$$GVP = Z^{\kappa}KS + P^{L}L + P^{M}M = Z^{\kappa} = (GVP - P^{L}L - P^{M}M)/KS$$
(29)

Then,
$$v_{L} = P^{L}L/GVP$$
, $v_{M} = P^{M}M/GVP$, $v_{\kappa} = Z^{\kappa}KS/GVP$ (30)

Thus, Z^{K} is Berndt and Fuss's (1986) quasi-rent, or shadow rental price of capital.

Consequently, our capital input is adjusted for over- or under- capital utilization. Within this framework, it is easily proved that capital utilization is given by the formula: $cu = Z^{K}/P^{K}$, where P^{K} is the market rental price of capital. If cu > 1, unit cost is rising because of decreasing returns to the increasingly utilized fixed capital stock. If cu < 1, unit cost is falling, and if cu = 1, then the firm's output equals its capacity output and average cost is at a minimum.

By utilizing the methodology developed thus far, we have estimated TFP and partial productivity indices for the manufacturing sector of Greece. The estimates are presented in the following section.

4. The Estimates

The estimated TFP indices at the three-digit, as well as the two-digit ISIC level are presented in tables A.2 and A.3 of the Appendix, respectively. The next Tables 3.1 to 3.7 present summary statistics of the estimated TFP, output, input, partial productivity indices, capital utilization ratios, and the shares of labor, intermediate consumption, and capital, all at the three-digit ISIC level.¹

TABLE 3.1 Summary Statistics of TFP Chain-Linked Indices, at the Three-Digit ISIC Level

Variable	Obs	Mean	Std. Dev.	Min	Max
tfp81	96	96.31	10.78	38.60	135.83
tfp82	96	94.46	12.07	41.01	123.40
tfp83	96	94.56	14.56	39.53	132.10
tfp84	96	96.15	14.84	40.44	145.15
tfp85	96	98.89	16.45	42.12	161.05
tfp86	96	99.51	20.53	35.71	182.27
tfp87	96	97.36	19.65	38.10	166.26
tfp88	96	97.99	19.69	40.09	168.60
tfp89	96	100.08	22.29	26.51	205.39
tfp90	96	100.40	22.25	26.17	174.28
tfp91	96	96.14	22.31	39.07	166.24

¹. All estimated figures at the three- and two-digit ISIC level are available on demand from the authors. They are not presented here because they would enormously increase the size of the paper. However, all our estimates will be presented in our KEPE study, "Productivity Measurement in the Manufacturing Sector of Greece, 1974-1991".

TABLE 3.2

Summary Statistics of Output Chain-Linked Indices, at the Three-Digit ISIC Level

Variable	Obs	Mean	Std. Dev.	Min	Max
y81 ¦	96	102.09	16.34	72.07	168.93
y82	96	101.07	20.74	57.15	187.08
y83	96	100.70	24.09	53.32	182.87
y84	96	104.94	31.46	48.04	264.34
y85	96	109.69	39.20	49.22	312.73
y86	96	108.60	36.49	38.95	241.42
y87	96	116.34	52.60	30.83	333.71
y88	96	122.03	53.78	26.03	339.96
y89	96	125.65	55.08	27.18	350.25
y90	96	128.99	62.55	32.83	459.39
y91	96	127.45	68.10	24.94	437.39

TABLE 3.3 Summary Statistics of Input Chain-Linked Indices, at the Three-Digit ISIC Level

				Min	Max
Variable	Obs	Mean	Std. Dev.		
in81 in82	96 96	106.80 107.56	18.49 20.49	77.63 71.84	232.48 208.44
in83 in84	96 96	107.10	22.80 28.07	67.94 56.49	202.47 221.97
in85 in86	96 96	111.20	32.64	51.95 46.95	251.49 304.13
in87 in88	96 96	123.69	87.11 84.62	37.21 35.56	875.84 847.97
in89 in90	96 96	127.01	52.52	31.28	348.91 378.49
in90 in91	96	131.05	56.39	32.32	374.87

TABLES 3.4

Summary Statistics of Labor Productivity Chain-Linked Indices, at the Three-Digit ISIC

Variable	Obs	Mean	Std. Dev.	Min	Max
prodl81	96	101.48	21.89	13.95	247.83
prod182	96	102.09	22.44	16.03	211.97
prod183	96	105.78	27.93	15.44	219.44
prod184	96	110.35	29.68	16.06	259.00
prod185	96	116.38	34.58	16.67	297.11
prod186	96	117.66	38.40	14.34	338.51
prod187	96	120.79	44.86	29.93	368.59
prod188	96	124.71	43.54	28.37	330.79
prod189	96	130.88	50.14	7.81	418.09
prod190	96	137.01	60.59	7.74	517.81
prod191	96	140.45	57.99	12.39	421.75

TABLE 3.5

Summary Statistics of Intermediate Consumption Productivity Chain-Linked Indices, Three-Digit ISIC

Variable	Obs	Mean	Std. Dev.	Min	Max
prodm81 ¦	96	97.84	8.24	71.55	122.86
prodm82	96	96.87	10.97	61.19	123.64
prodm83	96	95.33	12.52	63.28	141.14
prodm84	96	96.95	14.68	67.17	152.07
prodm85	96	98.21	17.53	62.98	172.81
prodm86	96	100.68	50.35	62.68	559.92
prodm87	96	94.19	20.93	33.99	169.03
prodm88	96	95.13	18.97	38.91	164.41
prodm89	96	97.16	21.98	55.59	186.16
prodm90	96	96.14	21.44	60.81	187.48
prodm91	96	94.45	21.55	58.69	179.95

TABLES 3.6

Summary Statistics of Capital Productivity Chain-Linked Indices, Three-Digit ISIC Level

prodk819691.1219.5750.13156.45prodk829686.1023.2640.37170.47prodk839688.1027.3040.26176.56prodk849689.5728.2539.73217.48prodk859696.8334.9443.60286.41prodk8696104.0844.1638.69335.58prodk8796102.9351.1941.03287.37prodk8896100.0350.8929.12321.54prodk8996101.3351.5231.55415.40prodk9096102.0449.1126.59315.48prodk919686.0247.2319.44319.37	Variable	Obs	Mean	Std. Dev.	 Min	Max
	prodk82 prodk83 prodk84 prodk85 prodk86 prodk87 prodk88 prodk89 prodk90	96 96 96 96 96 96 96 96	86.10 88.10 89.57 96.83 104.08 102.93 100.03 101.33 102.04	23.26 27.30 28.25 34.94 44.16 51.19 50.89 51.52 49.11	40.37 40.26 39.73 43.60 38.69 41.03 29.12 31.55 26.59	170.47 176.56 217.48 286.41 335.58 287.37 321.54 415.40 315.48

TABLE 3.7 Summary Statistics of Capital Utilization, at the Three-Digit ISIC Level

cu80 96 0.372 0.429 -0.099 3.792 cu81 96 0.340 0.378 -0.014 3.425 cu82 96 0.313 0.435 0.017 3.741 cu83 96 0.317 0.469 0.037 4.276 cu84 96 0.316 0.478 0.020 4.386 cu85 96 0.335 0.480 -0.003 4.582 cu86 96 0.365 0.453 0.074 4.083						
cu81 96 0.340 0.378 -0.014 3.425 cu82 96 0.313 0.435 0.017 3.741 cu83 96 0.317 0.469 0.037 4.276 cu84 96 0.316 0.478 0.020 4.386 cu85 96 0.335 0.480 -0.003 4.582 cu86 96 0.365 0.453 0.074 4.083 cu87 96 0.374 0.728 -0.136 6.935 cu88 96 0.370 0.799 0.061 7.840 cu89 96 0.258 0.292 -1.747 1.755 cu90 96 0.255 0.341 -2.309 1.605	Variable	Obs	Mean	Std. Dev.	Min	Max
cu89960.2580.292-1.7471.759cu90960.2550.341-2.3091.609	cu81 cu82 cu83 cu84 cu85 cu86 cu87	96 96 96 96 96 96 96	0.340 0.313 0.317 0.316 0.335 0.365 0.374	0.378 0.435 0.469 0.478 0.480 0.453 0.728	-0.014 0.017 0.037 0.020 -0.003 0.074 -0.136	3.792 3.425 3.741 4.276 4.386 4.582 4.083 6.935
	cu89 cu90	96 96	0.258	0.292 0.341	-1.747 -2.309	1.75

TABLE 3.8

Summary Statistics of the Shares of Labor (vl), Intermediate Consumption (vm), Capital (vk), at the Three-Digit ISIC Level

Variable	Obs	Mean	Std. Dev.	Min	Max
v180	96	0.188	0.096	0.015	0.621
v181	96	0.184	0.093	0.012	0.579
v182	96	0.204	0.100	0.015	0.695
v183 ¦	96	0.194	0.095	0.015	0.641
v184	96	0.197	0.095	0.014	0.53
v185	96	0.189	0.092	0.012	0.54
v186	96	0.175	0.088	0.019	0.513
v187	96	0.173	0.081	0.023	0.499
v188	96	0.178	0.079	0.026	0.48
v189	96	0.192	0.115	0.030	0.957
v190 ¦	96	0.197	0.124	0.031	1.050
v191	96	0.190	0.088	0.032	0.563
vm80	96	0.607	0.126	0.242	0.962
vm81	96	0.612	0.120	0.265	0.95
vm82	96	0.608	0.120	0.279	0.949
vm83	96	0.614	0.117	0.276	0.948
vm84	96	0.617	0.124	0.235	0.95
vm85	96	0.618	0.124	0.226	0.948
vm86	96	0.611	0.129	0.113	0.92
vm87	96	0.624	0.104	0.343	0.91
vm88	96	0.613	0.105	0.279	0.89
vm89	96	0.607	0.117	0.280	0.88
vm90	96	0.600	0.114	0.263	0.920
vm91	96	0.586	0.113	0.238	0.84
vk80	96	0.206	0.067	-0.062	0.379
vk81	96	0.205	0.064	-0.039	0.40
vk 82	96	0.188	0.058	0.026	0.40
vk83	96	0.191	0.055	0.037	0.36
vk84	96	0.186	0.065	0.014	0.36
vk85	96	0.193	0.065	-0.004	0.44
vk86	96	0.214	0.080	0.060	0.74
vk 87	96	0.203	0.073	-0.146	0.39
vk88	96	0.209	0.062	0.070	0.40
vk89	96	0.201	0.077	-0.242	0.39
vk90	96	0.203	0.084	-0.338	0.36
vk91	96	0.223	0.062	0.048	0.38

On the basis of Tables A.2 and A.3 we can distinguish the following categories of TFP behavior:

(1) A growth trend during the entire period. For example, the following industries belong to this category: 204, 213, 221 and 222, 259, 332, 337, 361, 368, 383. We call these industries "Dynamic".

(2) A growth trend until 1985 or 1986, followed by a decline thereafter. For example, the following industries belong to this category: 207, 236, 237, 244, 367, 381. We call these industries "EC-Undesirable". We note that Greece officially joint the EC (European Community) in 1981, but the time period 1981-1985 was a transition period.

(3) A growth trend from 1986 or 1987. Examples of this group behavior include the following industries: 209, 393, 394, 398. We call these industries "EC-Favored".

(4) Finally, a declining time path includes industries like the 205, 272, 301, 378. We call these industries "Dying".

Another observation based on Table A.2 is that since 1986 there is a declining number of industries which shows an increase in TFP with respect to the previous year. The actual number of these industries during 1980-1991 is shown in the following table:

TABLE 4.1
Number of Three-Digit Industries Showing an Increase in
TFP Indices, 1980-1991

1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
30	39	42	58	62	51	44	50	59	49	21
	11	5	4	3	2	0				

The second line of Table 4.1 shows that only 11 out of the 30 industries showing an increase in 1981 also show an increase in 1982; this number becomes 5 for 1983, and in 1987 there are no common industries which show an increase during 1980-1987 included.

Tables 3.1 to 3.8 show that for some industries, although output has grown satisfactorily, the intermediate inputs used have grown even "more satisfactorily", being responsible for a stagnant or falling TFP growth rate. Regarding partial productivity indices, shown in Tables 3.4, 3.5, and 3.6, we observe that labor productivity has increased, most probably because of the reduction or non-increase in the number of persons employed. Intermediate-inputs productivity is rather falling, while capital productivity is slightly

Intermediate-inputs productivity is rather falling, while capital productivity is slightly increasing, with the exception of 1991 that records a -15.7% decrease in relation to 1990.

Capital utilization ratios are below unity for all two-digit manufacturing industries, meaning decreasing unit costs. Factor shares in Table 3.8 show that intermediate consumption absorbs most of the sector's income, more than 60% on average. Capital follows with a share slightly above 20%. Labor scores last with a share of slightly below 20%. The minus signs in Tables 3.7 (capital utilization) and 3.8 (share of capital) are explained by the fact that some three-digit ISIC industries, in particular years, generated a gross value of output well below their expenditures for intermediate consumption and employees' compensation summed together. The result was a negative outcome in equation (29).

5. Conclusions

This paper has used the traditional growth accounting statistical framework in order to compute partial and total factor productivity indices for the manufacturing sector of Greece during the time period 1980-1991. It has covered a gap existing in the coverage of the official economic statistics for manufactures in Greece. This data base is particularly useful for a scientifically based policy analysis regarding the Greek manufacturing sector. One of the immediate conclusions that come out of this data is that a number of industries, the "dynamic", may be considered under a set of policy measures which differentiates from that set of policy measures directed towards the "dying" or "EC-undesirable" industries. Also, the development of "EC-favored" industries could be analysed so that we could draw some lessons or conclusions for other industries.

APPENDIX

Titles of ISIC Codes, TFP at the Three-Digit and Two-Digit ISIC

Titles of ISIC Two - and Three - Digit Codes

20 Food and Kindred Products

- 201 Meat Products
- 202 Dairy Products
- 203 Canned, Frozen, and Preserved Fruits, Vegetables, and Food Specialties
- 204 Fats and Oils
- 205 Grain Mill Products
- 206 Bakery Products
- 207 Sugar
- 208 Chocolate and Confectionery Products
- 209 Miscellaneous Food Preparations and Kindred Products

21 Beverages

- 211 Alcoholic Drinks and Alcohol
- 212 Wines
- 213 Beer
- 214 Non-alcoholic Drinks, Mineral Water
- 22 Tobacco Manufactures
- 221 Tobacco
- 222 Cigarettes and Cigars

23 Textile Mill Products

- 231 Manmade and Natural Wool Fiber and Fabrics
- 232 Manmade and Natural Cotton Fiber and Fabrics
- 233 Manmade and Natural Silk Fiber and Fabrics, and Nylon Fiber
- 234 Manmade Fiber and Fabrics, except Nylon
- 235 Jute, Linen and Canvas and Related Products
- 236 Knitting Mills
- 237 Coloring, Printing and Finishing Plants
- 238 Threads and Yarns
- 239 Miscellaneous Textiles

24 Apparel and Other Textile Products

- 241 Shoe Making
- 242 Shoe Repair
- 243 Apparel
- 244 Clothing and Other Textile Goods

TABLE A.1 (Continued)

25 Lumber, Wood and Cork Products

- 251 Sawmills and Planing Mills
- 252 Construction Wood Works
- 253 Wood Containers and Small Wood Goods
- 259 Cork and Cork Products

26 Furniture and Fixtures

- 261 Wood Household Furniture
- 262 Metal Household Furniture

27 Paper and Allied Products

- 271 Pulp and Paper Mills
- 272 Paper Products

28 Printing and Publishing

- 281 Printing and Editing of Newspapers, Journals, Books and Pamphlets
- 282 Miscellaneous Printing Works

29 Leather, Leather Products and Furs

- 291 Leather Plants
- 292 Fur and Fur Products, Except Apparel
- 293 Manmade and Natural Leather Products, Except Apparel and Shoes

30 Rubber and Miscellaneous Plastics Products

- 301 Rubber Plants
- 302 Miscellaneous Plastics Products

31 Chemicals and Allied Products

- 311 Acids, Salts and Fertilizers
- 312 Plastics Materials and Resins, Manmade Fibers
- 313 Other Primary Chemical Plants
- 314 Paints, Printing Inks and Allied Products
- 315 Pharmaceuticals
- 316 Cosmetics, Perfumes and Toilet Preparations
- 317 Soaps and Detergents
- 319 Miscellaneous Chemicals Products

32 Petroleum and Coal Products

- 321 Petroleum Refining
- 322 Coal Products and Lignite
- 329 Petroleum Byproducts
- 33 Non-metallic Minerals and Allied Products

TABLE A.1 (Continued)

- 331 Minerals and Earths for Structures
- 332 Glass and Glass Products
- 333 Clay, Porcelain and Related Products
- 334 Cements
- 335 Lime, Gypsum and Related Products
- 336 Cement Products
- 337 Marble and Marble Products
- 338 Asbestos Products
- 339 Miscellaneous Non-Metallic Minerals Products

34 Primary Metal Industries

- 341 Iron
- 342 Other Metals

35 Fabricated Metal Products, except for Machinery and Transport Equip.

- 351 Iron Tubes
- 352 Chains, Wire Springs, Nails and Related Products
- 353 Metal Structures
- 354 Metal Tools
- 355 Household Metal Appliances
- 356 Cast Iron Products
- 357 Copper and Lead Products
- 358 Aluminum Products
- 359 Miscellaneous Metal Products, except Machinery and Transport Equip.

36 Machinery Except Electrical

- 361 Internal Combustion Engines
- 362 Air Conditioning Machines
- 363 Agricultural Machinery
- 364 Machinery for Roads, Quarries and Structures
- 365 Machinery for the Food, Beverages and Tobacco Industries
- 366 Machinery for the Textile, Wood and Metal Industries
- 367 Pumps, Blowers and Industrial Spraying Machinery
- 368 Office Equipment and Balances
- 369 Machinery and Repair non specifically Named

37 Electric and Electronic Equipment

- 371 Electrical Machinery
- 372 Transformers and Dry Electrical Elements

TABLE A.1 (Continued)

- 373 Electrical Coil Windings and Electrical Wiring
- 374 Lamps and Lighting Fixtures
- 375 Other Electrical Materials
- 376 Telecommunications, Materials and Hearing Devices
- 377 Electrical Scientific Instruments
- 378 Other Electrical Apparatuses
- 379 Repair of Electrical Equipment

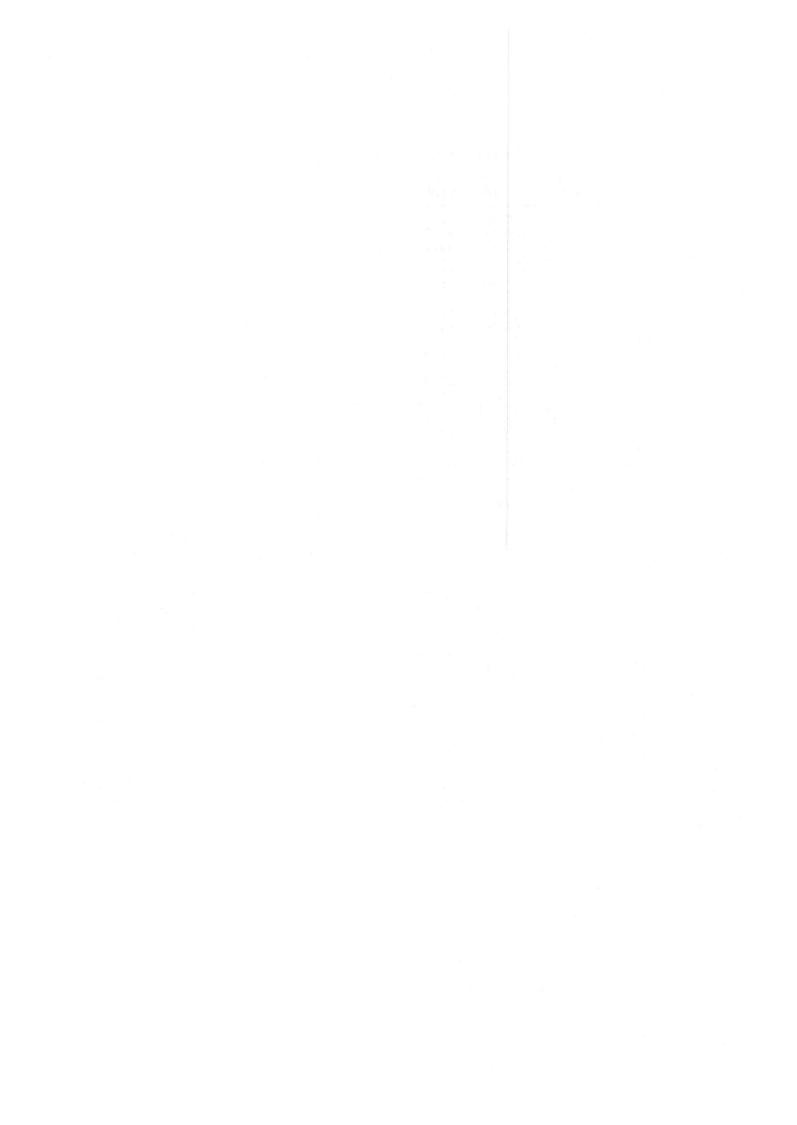
38 Transportation Equipment

- 381 Boats and Repair
- 382 Rail Materials
- 383 Cars
- 384 Car Repair
- 385 Motorcycles and Bikes
- 386 Repair of Motorcycles and Bikes
- 387 Repair of Airplanes
- 389 Other Transportation Equipment

39 Miscellaneous Manufacturing Establishments

- 391 Medical Instruments, Measuring and Control Instruments
- 392 Photographic and Optical Products
- 393 Repair of Photographic and Optical Products
- 394 Watches and Cosmetics
- 395 Repair of Watches
- 396 Musical Instruments
- 397 Toys and Athletics Products
- 398 Manmade Teeth
- 399 Miscellaneous Plants

Chained TFP Indices at the Three-Digit ISIC Level


	code	tfp180	tfp181	tfp182	tfp183	tfp184	tfp185	tfp186	tfp187	tfp188	tfp189	tfp190	tfp191
1.	201	100.00	97.47	99.66	103.05	106.88	107.18	102.39	108.65	107.77	109.81	107.11	100.90
2.	202 203	100.00	96.77	87.82	85.14	90.61	89.93	86.34	87.04	88.16 81.16	84.74 81.36	79.04 85.12	82.87 87.53
4.	203	100.00	93.74 98.28	93.15 96.82	96.63 107.67	93.94 106.88	90.84 104.29	83.93 112.38	82.54 114.25	117.46	116.23	117.83	121.41
5.	205	100.00	95.74	94.05	90.60	92.34	86.70	90.00	86.54	85.24	89.31	88.14	83.15 90.24
6.7.	206 207	100.00	95.71 101.77	97.13 104.53	100.75	102.12	97.43	93.75 93.67	88.62 97.57	90.50 88.37	91.47 88.54	91.57 99.31	88.80
8.	208	100.00	97.87	95.98	100.34 91.34	111.52 93.23	118.93 94.47	86.92	92.45	88.61	85.04	79.98	71.86
9. 10.	209 211	100.00	100.80	102.00	98.92	95.99	93.77	84.28	86.03	90.87 82.46	93.50 74.70	96.25 74.29	95.32 72.32
11.	212	100.00	77.47 96.88	69.97 97.47	68.98 92.26	75.55 84.85	75.93 87.48	79.92 84.44	80.90 80.13	80.01	73.07	66.98	57.91
12.	213	100.00	102.73	88.35	80.66	96.10	96.83	105.29	117.84	117.36	113.99	121.50 95.58	115.26 92.09
13. 14.	214 221	100.00	91.73 96.94	79.72 100.50	80.47 104.42	84.62 112.88	91.01 110.08	92.29 113.60	87.30 106.33	99.09 113.64	97.56 118.25	133.63	137.87
15.	222	100.00	92.91	93.03	99.75	102.30	106.82	120.67	115.77	127.32	135.48	155.46	163.82 73.85
16. 17.	231 232	100.00	95.97 98.16	86.13 94.57	80.33	89.10	93.47	93.93	89.16 92.81	91.00 91.39	82.77 93.84	75.79 90.72	92.62
18.	233	100.00	95.98	100.01	97.11 98.36	101.83 106.87	97.27 107.58	96.86 120.82	114.49	108.45	110.32	112.80	108.73
19.	234 235	100.00	82.16	81.14	76.33	82.86	85.18	89.09	80.50	75.16 94.39	71.29 108.22	72.73 109.38	77.16 118.13
21.	235	100.00	94.87 93.75	84.78 91.20	90.31 93.43	104.90 93.73	112.81 99.60	103.22 92.46	91.88 85.76	79.88	78.45	75.60	71.46
22.	237	100.00	102.64	101.59	103.14	99.89	106.18	113.75	131.85	122.11	101.16	100.95	97.09 73.08
23. 24.	238 239	100.00	91.76 93.66	95.41 100.10	88.32 93.81	87.29 84.22	80.87	80.66 90.35	82.17 84.50	74.63 76.25	75.62 76.94	73.47 71.17	74.33
25.	241	100.00	102.92	99.60	98.61	105.84	80.82 104.36	103.89	91.39	91.36	92.04	89.09	81.37
26. 27.	243 244	100.00	93.62 135.83	92.64	96.36	100.29	103.11	96.09	92.94	88.28	88.22 128.74	88.62 124.02	87.52 117.00
28.	251	100.00	92.92	119.69 90.34	126.50 95.90	145.15 105.85	155.62 104.59	152.49 105.09	151.49 102.10	151.49 100.04	114.19	120.47	112.19
29. 30.	252	100.00	95.37	97.35	87.31	80.10	85.01	79.45	89.15	95.24	100.11	87.51	80.64 89.65
31.	253 259	100.00	77.94 97.81	64.66 105.34	63.43 95.83	66.41 87.73	91.04 93.31	182.27 94.58	74.71 110.68	71.45 111.44	80.47 123.29	90.38 129.34	132.07
32.	261	100.00	95.13	93.89	98.23	103.39	106.17	111.16	108.24	107.02	111.09	109.73	102.76
33. 34.	262 271	100.00	90.24 92.04	88.00 104.54	88.25	90.34	92.59	92.50	96.91	97.13 112.47	104.16 104.77	101.57 110.94	94.97 113.71
35.	272	100.00	93.46	75.15	110.71 69.61	95.85 74.50	94.02 81.39	123.47 83.75	118.65 77.92	74.11	71.50	62.79	57.65
36. 37.	281	100.00	88.94	81.36	71.49	75.41	68.09	64.77	66.08	71.25	78.79	81.75	70.93 62.25
38.	282 291	100.00	100.96 93.35	94.65 82.10	89.98 91.46	88.56 99.16	85.02 94.10	77.19 106.83	78.46 114.57	80.02 116.80	75.92 120.88	62.73 118.77	96.57
39.	292	100.00	88.75	106.41	106.27	101.35	103.80	111.16	120.43	104.36	96.34	113.51	96.82
40. 41.	293 301	100.00	98.06 92.71	107.81 84.94	106.30	104.10	110.83	100.32	102.95 86.32	106.99 85.69	101.55 76.87	105.26 68.03	96.55 60.52
42.	302	100.00	97.56	94.79	90.87 94.61	94.58 95.05	93.63 98.08	92.77 104.55	99.41	97.29	97.70	96.97	86.38
43. 44.	311 312	100.00	100.69	100.93	103.41	90.69	87.20	98.68	118.18	98.67	81.65	95.28 174.28	93.83 145.67
45.	313	100.00	112.54 104.80	123.40 96.62	126.74 96.45	137.21 107.77	161.05 107.96	177.35 98.88	151.70 104.71	158.21 101.00	205.39 104.69	110.50	70.31
46.	314	100.00	100.89	91.71	85.88	84.98	90.32	82.47	87.66	82.99	83.02	84.49	84.38
47. 48.	315 316	100.00	97.41 103.88	99.40 98.55	96.00 87.27	92.58	93.61	103.72	115.63 92.56	120.67 94.41	125.63 95.06	127.94 87.67	117.45 81.02
49.	317	100.00	103.60	97.87	97.23	94.92 103.05	98.94 106.58	92.18 110.43	99.61	102.95	103.30	95.15	92.61
50. 51.	319 321	100.00	94.59	75.15	77.52	76.92	81.68	84.58	76.46	80.85	79.46	82.45 95.28	84.54 86.84
52.	329	100.00	111.76 98.98	119.15 100.42	114.22 98.87	113.99 100.20	114.51 98.12	68.74 72.40	76.25 82.67	71.84 76.68	85.36 90.05	89.63	82.37
53. 54.	331	100.00	85.49	92.64	94.90	79.67	89.91	91.67	82.52	96.44	96.63	88.54	81.39
55.	332 333	100.00	87.58 87.38	83.54 80.11	80.60 89.10	86.59 93.02	86.50	98.28 93.99	104.21 84.37	96.02 79.83	102.43 84.59	106.09 83.71	104.87 72.19
56.	334	100.00	85.61	81.94	75.55	81.64	94.11 78.90	87.67	98.08	98.08	92.08	97.23	90.74
57.	336 337	100.00	87.93 102.94	82.52 109.75	75.36	78.98	77.91	81.37	83.53	81.68 168.60	80.19 163.87	81.93 170.21	76.45 166.24
59.	339	100.00	83.15	86.65	113.51 82.56	125.29 86.07	124.83 93.95	140.49 99.64	166.26 105.53	94.86	91.46	88.82	86.73
60.	341 342	100.00	92.54 91.85	87.53 70.72	82.56	80.64	83.35	98.18	98.38	97.33	101.78	105.77	101.56 97.42
62.	351	100.00	104.92	110.15	90.59 104.97	86.35 105.52	87.21 98.45	92.45 101.40	99.19 105.32	93.46 109.19	84.75 112.61	101.51 110.87	102.30
63. 64.	352 353	100.00	103.58	93.01	92.15	97.88	103.59	101.30	107.10	115.01	118.53	115.23	108.22
65.	354	100.00	100.23 93.09	91.68 90.46	91.87 101.72	90.42 94.68	92.92	96.56	92.94	95.83	95.23	74.06	62.25
66.	355	100.00	99.40	102.41	108.83	104.91	93.62 113.71	82.97 115.22	98.89 101.43	105.30 103.00	101.39 100.39	101.04 105.03	89.77 92.71
67. 68.	356 357	100.00	84.46 112.03	89.42	77.93	84.29	85.67	82.09	78.09	107.78	130.92	122.90	94.28
69.	358	100.00	95.27	89.50 93.75	97.70 104.38	89.47 85.03	95.70	115.51	123.69	92.81	90.09	109.74 108.59	108.05 98.03
70. 71.	359	100.00	94.12	98.90	104.87	95.80	86.88 96.03	108.87 90.40	92.98 90.01	96.59 92.81	105.03 94.12	100.58	94.98
72.	361 362	100.00	108.31 102.23	111.41 101.07	104.84 90.32	96.59 103.64	114.48	125.49	118.25	130.20	123.73	127.84	125.57
73.	363	100.00	95.07	92.73	90.99	99.20	119.38 111.77	110.13 106.23	87.70 115.22	81.22 119.12	92.92 119.02	88.10 111.25	83.43 105.62
74. 75.	364 365	100.00	113.40 105.49	113.19	108.67	123.68	126.63	133.07	133.84	139.02	146.17	135.00	115.71
76.	366	100.00	110.23	99.08 107.55	119.33 132.10	99.77 96.87	94.57	101.36	104.76	93.23	92.48	93.45	92.37
77.	367	100.00	101.57	103.78	107.02	107.97	114.86 131.44	105.22 107.41	82.84 98.04	73.18 86.89	86.91 100.05	92.79 101.49	79.09 91.96
78. 79.	368 369	100.00	73.33 95.90	106.69 102.86	119.65 96.79	115.25	112,19	131.50	125.99	125.82	129.83	131.67	152.67
80.	371	100.00	97.42	106.29	123.71	90.89 119.89	99.90 117.50	104.98 105.78	124.23 101.22	111.57 116.80	116.36	112.88 132.73	101.96 130.34
81. 82.	373 375	100.00	106.51 92.04	101.11	104.03	113.78	108.01	108.86	113.73	114.10	143.92 106.84	107.04	101.76
83.	376	100.00	91.56	95.38 94.59	95.99 85.55	100.32 84.69	101.78	102.95	101.85	102.44	96.17	97.75	88.81
84. 85.	377	100.00	103.67	105.54	109.21	109.28	83.80 111.70	76.99 117.77	74.93 103.78	82.28 109.71	97.75 113.43	100.87	122.98 103.72
86.	378 379	100.00	93.93 38.60	85.84 41.01	81.62 39.53	80.92	86.58	86.39	79.83	81.55	83.61	81.50	78.39
87.	381	100.00	123.63	111.57	125.75	40.44 125.76	42.12 126.79	35.71 68.54	38.10	40.09	26.51	26.17 74.23	39.07 80.30
88. 89.	383 384	100.00	99.42 92.35	87.29	77.51	74.34	87.81	89.94	51.26 84.92	69.11 96.38	75.36 102.74	113.47	127.41
90.	389	100.00	83.35	86.51 76.94	78.81 82.24	98.34 110.53	109.96	96.05	88.06	102.66	113.54	112.51	98.05
91. 92.	393	100.00	87.57	94.14	91.56	88.10	116.40 94.69	106.51 83.50	100.31 88.47	117.47 87.29	124.15 93.69	113.46 102.21	110.24 118.25
92.	394 396	100.00	109.06 94.11	102.73 92.50	94.58 91.97	91.33 89.34	88.96	102.97	104.29	102.84	109.15	121.38	116.68
94.	397	100.00	101.81	102.44	97.48	119.09	89.29 124.35	92.17 120.61	85.62 108.50	89.43 97.52	98.15 98.87	98.96 94.63	103.19 101.27
95. 96.	398 399	100.00	92.72 98.10	101.60 88.18	93.93	102.31	92.32	102.55	83.45	117.76	117.44	122.08	122.03
					82.99	85.03	82.96	69.62	62.25	72.89	81.17	83.76	83.98
Note:	329=322+329,	339=3354	+338+339, 37	7=372+374+37	7, 389=385+	386+387+389							

5 1

Note: 329=322+329, 339=335+338+339, 377=372+374+377, 389=385+386+387+389, 393=392+393, 398=391+395+398

	twodig	tfp80	tfp81	tfp82	tfp83	tfp84		
1.	20	100.00	96.92			94.85		
2.	21	100.00	92.32	84.59	79.27	80.51		
з.	22	100.00	95.11	94.03	98.02	103.75		
4.	23	100.00	96.57	93.94	93.14	95.10		
5.	24	100.00	97.74	95.71	96.17	100.14		
6.	25	100.00	92.27	87.34	87.42	91.92		
7.	26	100.00	93.86	90.02	90.75	94.22		
8.	27	100.00	96.20	94.17	93.62	92.06		
9.	28	100.00	94.62	88.46	81.19	78.42		
10.	29	100.00	92.43	88.33	91.76	97.84		
11.	30	100.00	96.46	92.76	91.56	92.83		
12.	31	100.00	102.11	101.08	98.75	97.52		
13.	32	100.00	111.39	121.39	122.64	120.03		
14.	33	100.00	86.54	79.63	76.49	75.55		
15.	34	100.00	91.79	82.30	79.19	81.71		
			99.06	97.76	98.53	98.05		
16.	35	100.00						
17.	36	100.00	100.32	101.77	102.48	101.09		
18.	37			95.08	93.82	94.22		
19.	38	100.00	105.11		97.79	101.38		
20.	39	100.00	97.98	96.48	93.81	95.94		
	twodig	tfp85	tfp86	tfp87	tfp88	tfp89	tfp90	tfp91
 1.								
1.	20	93.84	90.09	87.72	88.01	88.20	88.60	88.77
2.	20 21	93.84 84.17	90.09 86.27	87.72 87.95	88.01 90.66	88.20 91.20	88.60 88.86	88.77 85.57
2. 3.	20 21 22	93.84 84.17 106.77	90.09 86.27 110.28	87.72 87.95 111.32	88.01 90.66 111.62	88.20 91.20 119.05	88.60 88.86 130.06	88.77 85.57 140.98
2. 3. 4.	20 21 22 23	93.84 84.17 106.77 96.73	90.09 86.27 110.28 96.86	87.72 87.95 111.32 95.39	88.01 90.66 111.62 91.88	88.20 91.20 119.05 89.71	88.60 88.86 130.06 87.97	88.77 85.57 140.98 86.48
2. 3. 4. 5.	20 21 22 23 24	93.84 84.17 106.77 96.73 103.77	90.09 86.27 110.28 96.86 102.01	87.72 87.95 111.32 95.39 96.79	88.01 90.66 111.62 91.88 92.61	88.20 91.20 119.05 89.71 90.48	88.60 88.86 130.06 87.97 89.81	88.77 85.57 140.98 86.48 88.32
2. 3. 4. 5. 6.	20 21 22 23 24	93.84 84.17 106.77 96.73 103.77 96.23	90.09 86.27 110.28 96.86 102.01 98.50	87.72 87.95 111.32 95.39 96.79 95.42	88.01 90.66 111.62 91.88 92.61 91.16	88.20 91.20 119.05 89.71 90.48 96.37	88.60 88.86 130.06 87.97 89.81 103.42	88.77 85.57 140.98 86.48 88.32 101.23
2. 3. 4. 5. 6. 7.	20 21 22 23 24 25 26	93.84 84.17 106.77 96.73 103.77 96.23 97.38	90.09 86.27 110.28 96.86 102.01 98.50 100.16	87.72 87.95 111.32 95.39 96.79 95.42 101.35	88.01 90.66 111.62 91.88 92.61 91.16 100.57	88.20 91.20 119.05 89.71 90.48 96.37 102.62	88.60 88.86 130.06 87.97 89.81 103.42 104.15	88.77 85.57 140.98 86.48 88.32 101.23 99.85
2. 3. 4. 5. 6. 7. 8.	20 21 22 23 24 25 26 27	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42
2. 3. 4. 5. 6. 7. 8. 9.	20 21 22 23 24 25 26 27 28	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04
2. 3. 4. 5. 6. 7. 8. 9. 10.	20 21 22 23 24 25 26 27 28 29	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	20 21 22 23 24 25 26 27 28 29 30	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30
2. 3. 5. 6. 7. 8. 9. 10. 11. 12.	20 21 22 23 24 25 26 27 28 29 30 31	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	20 21 22 23 24 25 26 27 28 29 30 31 32	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	20 21 22 23 24 25 26 27 28 29 30 31 32 33	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48 96.35	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44 96.23	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50 95.40	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58 96.56	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97 98.67	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16 99.45	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94 95.27
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48 96.35 105.63	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44 96.23 109.63	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50 95.40 111.06	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58 96.56 110.39	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97 98.67 109.49	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16 99.45 110.57	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94 95.27 105.23
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48 96.35 105.63 95.33	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44 96.23 109.63 94.66	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50 95.40 111.06 92.18	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58 96.56 110.39 92.06	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97 98.67 109.49 94.95	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16 99.45 110.57 96.13	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94 95.27 105.23 97.48
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48 96.35 105.63 95.33 109.00	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44 96.23 109.63 94.66 101.68	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50 95.40 111.06 92.18 84.43	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58 96.56 110.39 92.06 86.58	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97 98.67 109.49 94.95 98.74	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16 99.45 110.57 96.13 103.05	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94 95.27 105.23 97.48 105.33
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	93.84 84.17 106.77 96.73 103.77 96.23 97.38 92.17 76.38 98.77 94.50 97.46 120.18 76.88 82.48 96.35 105.63 95.33	90.09 86.27 110.28 96.86 102.01 98.50 100.16 101.36 71.08 101.35 97.76 101.01 93.73 80.04 88.44 96.23 109.63 94.66	87.72 87.95 111.32 95.39 96.79 95.42 101.35 106.43 69.22 107.81 97.24 106.73 76.90 85.58 95.50 95.40 111.06 92.18	88.01 90.66 111.62 91.88 92.61 91.16 100.57 100.92 71.62 108.89 93.69 108.58 78.45 87.63 95.58 96.56 110.39 92.06	88.20 91.20 119.05 89.71 90.48 96.37 102.62 95.60 75.21 107.16 91.87 107.23 83.02 86.32 92.97 98.67 109.49 94.95 98.74	88.60 88.86 130.06 87.97 89.81 103.42 104.15 90.76 74.64 109.03 89.60 108.26 95.46 86.22 97.16 99.45 110.57 96.13	88.77 85.57 140.98 86.48 88.32 101.23 99.85 87.42 69.04 102.83 83.30 105.82 95.88 84.28 100.94 95.27 105.23 97.48

TFP Chain-Linked Indices at the Two-Digit ISIC Level

Estimated Capital Stock at the Three-Digit ISIC Level, million Drs.

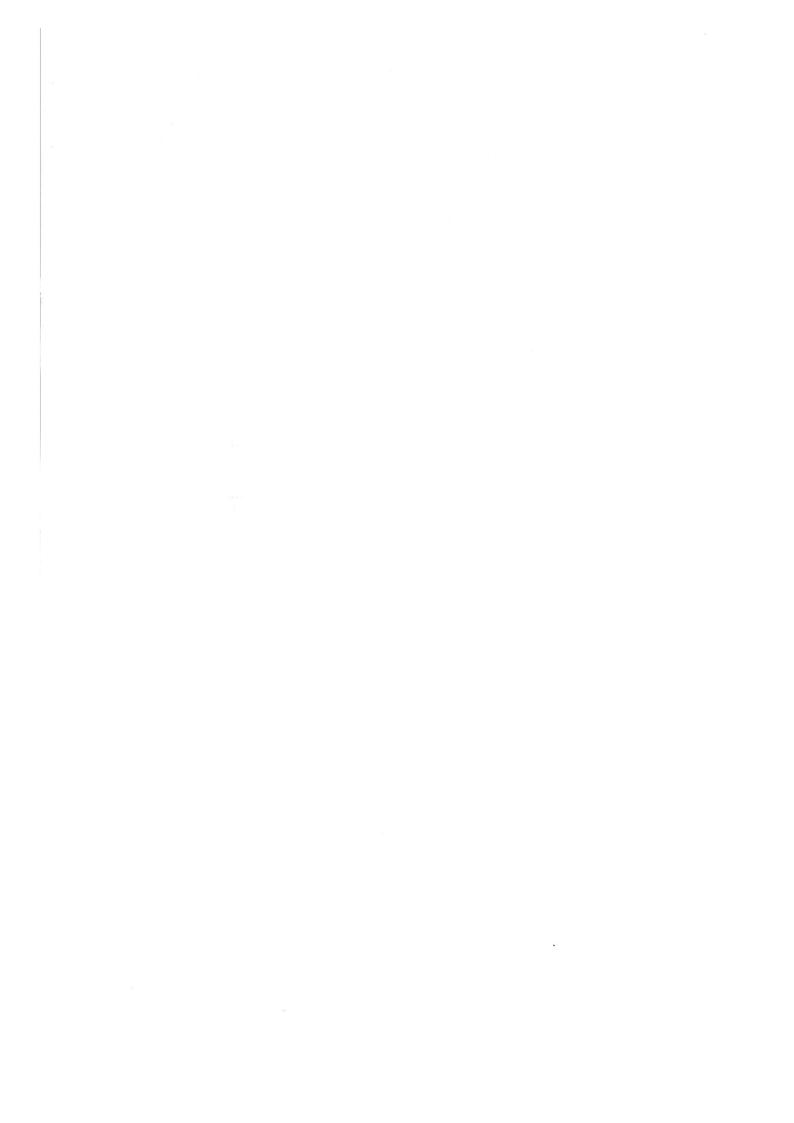
- -

	code	capst80	capst81	capst82	capst83	capst84	capst85	capst86	capst87	capst88	capst89	capst90	capst91
1.	201	4382.342	6233.089	8185.458	10289.254	12609.667	15526.854	18406.102	23047.672	27834.453	36234.852	44695.832	59904.895
2. 3.	202 203	8144.558 27041.068	10528.104 35609.961	13626.641 43670.441	15705.417 52035.047	19138.920 67784.531	25702.496 83135.672	31133.238 103444.141	43051.070 120432.508	55829.656 135023.656	74061.617 166343.594	93272.453 198780.063	115474.469 220774.766
4.	204	4791.017	6263.240	8251.731	9870.870	12243.631	14223.881	16679.838	19568.096	24810.883	26869.432	30861.572	34697.625
5.	205 206	4714.950 3170.656	7252.946 4614.740	10854.501 5836.449	12554.967 6786.412	14566.631 7789.407	17365.293 8664.924	19343.217 13114.204	21259.043 15760.007	24606.773 20171.070	27981.086 25058.559	32205.129 30750.070	39805.070 40117.590
7.	207	7200.735	7865.182	8858.992	11350.230	11350.230	14150.533	15539.782	16514.176	17263.107	19944.898	21970.734	23121.863
8. 9.	208 209	3182.259 10262.308	3982.337 15641.251	4799.721 17606.865	5652.199 24333.355	6919.394 34071.586	8119.296 41015.484	9875.587 45861.113	12751.687 52273.457	17883.459 62604.184	23080.145 73125.234	27367.934 93427.320	32707.666 114089.133
10.	211	3089.525	4833.500	7144.295	8562.298	9098.327	10712.546	12042.295	14320.538	16323.661	19294.170	20185.439	23726.176
11.	212 213	3901.770 17138.547	5592.329 26123.715	7749.239 35901.543	10353.102 42651.090	12701.318 45085.172	15205.520 59328.348	18722.117 68556.031	22699.377 72163.484	26283.756 77433.742	32905.500 84300.430	40308.348 98796.172	46637.262 113722.063
13.	214	5579.086	7330.395	9662.571	12198.833	16622.020	18129.072	20420.713	27721.184	33060.867	44820.195	53995.785	65237.020
14.	221 222	2049.427 7057.538	2638.390 9322.764	3498.353 10875.067	5253.336 14451.418	6116.963 16557.270	7271.696 20519.137	9091.752 24019.023	10414.754 31983.129	13446.650 38484.199	17971.104 42355.473	22009.533 47318.191	28168.527 56970.723
16.	231	15738.158	16865.961	18014.561	19884.639	20852.855	21810.949	23478.158	26328.752	28539.049	30514.871	32755.262	35542.508
17. 18.	232 233	63327.219 16566.463	81573.719 18199.615	91536.406 19425.506	109714.570 20547.551	125215.250 22888.707	142851.656 27035.508	165446.641 29093.258	196263.234 30916.773	247250.469 35576.152	296074.813 37995.605	335199.750 48173.645	353518.969 51400.023
19.	234	2307.782	4378.810	5500.136	6357.748	7270.583	8655.346	10119.264	10755.229	11908.588	13175.553	13932.427	14716.283
20.	235 236	845.547 12090.467	1172.029 16351.580	1511.608 20267.086	1875.214 24297.117	2048.238 28853.268	2197.518 33312.801	2224.944 41330.039	2324.593 51390.223	3071.381 68029.102	3753.561 85240.828	4697.092 106562.945	6141.498 123927.414
22.	237	8179.458	10527.479	13767.354	16049.135	18282.982 3744.350	20158.096 4497.324	24161.094 5836.035	29758.914 6821.121	35763.406	46869.691	56330.480	63487.414
23. 24.	238	942.108 2659.324	1730.169 3845.515	2527.972 4764.666	3090.458 5647.669	6871.096	8409.644	10214.440	12830.433	10795.351 14533.895	12875.770 16919.936	14229.802 19544.471	16889.928 21123.070
25.	241	3080.294	4010.797	5238.960	6589.582 23208.553	7555.893 27853.193	9236.079 35250.906	10640.761 44550.156	12627.046 54754.410	15139.777 70268.727	17707.023 86248.031	19604.199 105984.953	21222.201
26. 27.	243 244	12132.088 1129.304	15895.687 1408.599	19211.879 1581.191	1724.061	1813.585	2002.007	2271.035	3051.240	4750.214	5901.174	7703.211	122033.883 8695.982
28.	251	13806.797	16977.580 2409.778	19248.621 2702.724	21939.225 2989.801	23781.625 3143.017	25152.627 3312.084	31141.061 3472.045	34812.996 3900.557	38702.844 4328.149	44582.340 5198.515	57916.613 8729.032	78777.477
29. 30.	252 253	2072.422 883.090	1378.769	1542.427	1685.708	1810.698	1900.047	2519.994	2700.146	3296.684	3811.938	4554.238	11509.317 5464.768
31.	259	520.736 3341.888	550.923 4086.900	601.460 4808.366	797.852 6067.127	976.918 7117.655	985.718 8276.437	1137.109 9877.304	1316.698 11840.888	1348.925 14794.423	1558.608 18108.980	1649.219 24651.146	2032.081
32. 33.	261 262	1079.938	1811.504	2321.497	2650.366	2967.911	3474.057	4637.979	5646.062	6685.994	8757.853	10512.992	30101.928 13193.294
34.	271 272	17135.590 5418.836	18864.736 7931.818	20157.387 10728.680	23188.578 14576.103	24313.857 18514.662	27398.660 20582.023	30195.492 25065.115	35165.906 31215.451	39619.152 35869.566	54719.004 42115.785	57099.488 50199.070	61415.965 60105.391
35. 36.	281	3036.060	4517.790	6522.385	8540.672	10998.941	12965.753	18515.773	22295.459	26170.859	31300.461	36629.574	42840.500
37.	282 291	4134.140 1914.835	5030.318 2778.786	6670.741 3143.188	7943.565 3469.013	9936.728 3898.556	11711.174 4372.100	13562.418 4967.898	15782.651 5824.451	20163.977 7036.436	24315.270 7711.366	35595.480 9077.365	44897.891 12929.431
38. 39.	292	213.976	293.077	323.684	567.196	871.827	927.021	944.068	1040.488	1727.805	2524.377	2600.416	4398.112
40. 41.	293 301	204.489 4242.026	236.942 5675.825	279.500 6764.270	321.512 8408.632	579.520 9465.851	658.177 11941.727	915.605 15373.717	1031.393 18890.881	1273.099 22264.023	1581.360 25464.877	1795.314 32421.729	2122.973 39542.523
42.	302	18763.951	25121.416	30082.422	34423.551	39430.777	44423.445	52174.535	60642.867	72737.305	90863.391	114738.914	140955.500
43. 44.	311 312	13440.099 9858.879	15684.442 11828.721	25589.238 13593.568	32325.553 14457.286	46524.867 15266.638	56675.473 17138.379	50735.625 19066.832	62623.078 21060.451	66952.313 23054.107	71418.336 25838.068	74507.469 28357.334	77117.492 32883.980
45.	313	5332.255	6323.094	8151.099	9146.582	10333.245	12385.629	14568.483	18559.381	27198.650	34092.387	38602.488	42352.160
46. 47.	314 315	1938.708 5753.379	2521.896 7080.474	3030.406 9499.779	3449.357 11096.778	3991.807 13320.453	4689.352 17634.684	5459.355 21428.252	7189.559 26352.064	8941.040 32469.627	10672.682 38858.164	12195.204 47946.926	14213.491 60309.14 8
48.	316	1593.685	2229.930	3050.121	4165.176	5182.361	6539.736	9825.505	11920.426	14517.027	16092.613	17988.258	23412.744
49. 50.	317 319	3659.440 4514.971	4663.985 5627.005	5571.556 6794.060	6888.530 7497.695	7879.073 8607.295	9259.391 9859.377	10842.228 11346.968	15683.203 12372.860	19539.525 14278.377	24360.840 17525.209	29707.939 19548.848	34814.461 23266.371
51.	321	30224.947	35843.371	50425.508	68042.172	88246.414	92829.016	108198.508	156179.359	174570.531	203405.328	244670.234	273117.938
52. 53.	329 331	3120.371 7963.950	4072.978 12153.681	5076.991 14922.034	6173.729 16684.322	6859.458 21547.502	7645.366 25093.813	8326.894 28936.768	10783.153 30830.486	13488.815 32763.676	17189.684 39536.828	22054.307 51922.660	27823.650 64564.707
54.	332	6567.222	9944.953	12399.935	14554.795	15389.924	16305.897	17597.660	19304.453	23375.342	25415.850	27873.268	32562.723
55. 56.	333 334	3991.667 42319.895	5644.695 69062.188	7008.755 84980.273	7910.824 121074.109	9503.834 130525.586	11510.708 155411.016	14440.556 161892.391	18636.588 165876.109	23083.166 171031.781	27492.967 177932.500	30186.609	36871.176 212378.188
57.	336	6229.864	9098.092	11224.869 6642.772	13828.724 7463.592	15193.132 9842.403	16783.539 10207.280	18839.953	22499.189	29600.572	36545.207	48072.090	61885.113
58. 59.	337 339	3613.714 5275.105	5214.791 10699.251	13099.049	16982.646	18421.105	18917.711	12007.901 21258.422	14464.321 22660.160	20141.430 29041.879	25636.426	31981.336 33875.145	36623.766 35981.727
60.	341	30567.469 17914.811	48302.195 25598.076	60802.832 34598.262	90888.016 54490.504	106533.180 69253.133	119786.070 76103.547		128757.305	131802.719	140025.281	152961.219	172689.516
61. 62.	342 351	6447.704	8270.667	9259.265	9975.375	11072.069	12481.951	82648.195 13499.891	87679.297 13999.590	95740.141 15306.737	107345.117 18017.469		162286.313 23231.473
63.	352	4535.407 5659.116	5754.924 7842.250	7118.445 9607.449	8018.582 12209.664	8989.987 13445.988	10014.447 14283.509	11336.778	12724.565	14600.469	16741.363	20188.010	26547.350
64. 65.	353 354	371.203	567.662	602.388	744.125	858.135	1018.571	16187.120 1091.429	18392.488 1450.339	26692.215 1741.264	30663.400 2796.727	36367.266 3699.687	44300.031
66.	355	1060.741	1169.913	1336.185	1540.917	1847.739	2205.480	3695.064	5012.445	6191.462	6872.817	7706.997	4287.341 8701.172
67. 68.	356	437.207 1067.553	454.796 1436.075	499.644 1972.435	499.919 2350.756	723.121 2467.997	782.435 2854.323	911.770 3125.351	1000.460 3633.315	1031.901 3940.906	1352.362 5476.554	1501.376 7724.170	2026.000 8921.521
69.	358	1420.291 10442.501	1536.325 14137.781	1750.440 18228.439	1855.036 29999.871	2072.271 36079.285	2113.955	2635.124	3599.148	4168.224	5449.570	6789.201	7147.362
70. 71.	359 361	542.907	615.344	671.367	732.146	800.638	43110.449 916.299	52840.164 991.457	66961.359 1111.593	75500.672 1445.588	87592.172 1580.655	108913.758 1814.585	126125.016 2113.434
72.	362	273.557 2874.596	542.869 3113.847	798.708 3417.260	1334.197 3817.446	1493.972 3998.308	1638.903	1974.438	2191.558	2484.107	2553.063	2663.858	2944.753
73. 74.	363 364	1520.210	1619.045	1728.553	1852.187	2029.155	4566.828 2122.379	4995.864 2708.890	5286.963 3177.842	5653.222 3741.528	6918.771 4621.186	7572.351 5389.263	8234.633 6469.998
75. 76.	365 366	515.953 313.883	562.776 354.309	655.565 389.906	668.392 417.603	837.165 463.427	906.861 470.409	1033.784	1227.091	1537.139	1746.816	2007.805	3145.279
77.	367	1121.651	1385.286	1756.953	2202.757	2402.778	3291.060	486.666 3915.962	487.075 5290.371	490.710 9653.360	515.669 10119.371	553.592 10948.361	572.194 11769.163
78. 79.	368 369	23.840 3400.856	48.056 4341.885	52.474 4804.367	52.772 5486.765	53.287 6441.771	53.365 7242.548	54.779	65.156	80.954	84.189	107.546	167.284
80.	371	2747.549	3820.158	4020.365	4295.698	7037.417	7630.423	8434.136 8091.459	11053.880 8416.645	15282.713 9053.914	18114.070 10612.185	21849.818 12371.500	24674.209
81. 82.	373 375	9290.016 1854.827	10142.798 2503.241	12224.750 3173.431	12986.890 4031.646	14148.953 4881.802	17057.473 5760.024	19713.252	22595.436	26340.088	37096.402	44483.086	13562.447 51359.523
83.	376	1954.485	2639.206	3247.064	3696.642	4603.572	5223.594	6509.341 6466.843	7860.932 8469.267	9923.188 12202.862	12491.243 19000.621	15640.810 29010.691	17881.672
84. 85.	377 378	1267.432 4820.356	1832.652 6119.423	2169.459 7515.063	2509.867 9513.635	3382.425 10881.386	4933.863 13128.941	5577.011	8735.839	9756.633	10391.473	12192.279	39285.051 13299.563
86.	379	21.604	22.397	23.341	24.780	25.858	26.517	15522.731 80.850	19181.004 93.614	22155.555 119.049	27293.664 173.713	32405.980 178.327	39209.020 197.838
87. 88.	381 383	12660.982 7905.790	15146.712 9713.954	19125.838 11711.128	21649.574 13685.924	22934.244 14966.837	24431.729 16156.643	25532.115	29346.375	34781.156	40605.410	44988.043	56739.305
89.	384	1167.103	1652.372	2619.777	3084.122	3565.135	4017.295	17456.631 4396.416	18761.598 4902.610	19614.795 6292.035	23697.598 7259.186	27913.266	34670.445
90. 91.	389 393	3649.472 114.334	8318.010 123.799	9925.585 124.195	12892.965 140.741	13637.755 143.631	14854.449 153.569	15777.729	17670.473	19222.574	21247.303	8416.967 23026.688	9547.359 32289.131
92.	394	327.714	399.309	455.130	548.620	782.855	908.173	160.390 1029.042	168.911 1286.182	171.202 2323.630	178.097 2873.350	178.658 3554.499	195.272 3863.591
93. 94.	396 397	590.769 525.701	635.875 747.682	720.831 994.253	860.584 1301.781	980.522 1623.812	1160.115 2116.998	1292.484 2527.701	1524.729	1783.331	1911.786	2058.714	2258.778
95.	398	1207.843	1507.268	1689.160	1794.181	1927.108	1997.199	2232.353	2821.534 3861.544	3386.584 4199.679	3605.771 5971.907	3875.521 7392.131	4840.822 8549.200
96.	399	596.641	667.799	981.908	1668.366	2208.035	2553.734	3069.995	3322.914	3895.969	4305.838	5213.110	5779.825

REFERENCES

- Berndt, E. R., and Fuss, M. A., 1986, "Productivity Measurement with Adjustments for Variations in Capacity Utilization and Other Forms of Contemporary Equilibria", Journal of Econometrics, 33, 7-29.
- Christensen, L. R., Cummings, D., and Jorgenson, D. W., 1980, <u>Economic Growth</u>, <u>1947-73: An International Comparison</u>, in Kendrick, J. W. and Vaccara, B. N., eds., <u>New Developments in Productivity Measurement and Analysis</u>, NBER Studies in Income and Wealth, Vol. 44, Chicago University Press.
- Christensen, L. R., and Jorgenson, D. W., 1969, "The Measurement of U.S. Real Capital Input, 1929-1967", <u>Review of Income and Wealth</u>, 15, 292-320.
- Christensen, L. R., and Jorgenson, D. W., 1970, "U.S. Real Product and Real Factor Input, 1929-1967", <u>Review of Income and Wealth</u>, 16, 19-50.
- Denison, E.F., 1969, <u>Some Major Issues in Productivity Analysis: An Examination of</u> <u>Estimates by Jorgenson and Griliches</u>, Survey of Current Business, Part II, 49(5), 1-28.
- Denison, E.F., 1974, <u>Accounting for U.S. Economic Growth, 1929-1969</u>, Washington D.C., Brookings Institution.
- Diewert, W. E., 1976, "Exact and Superlative Index Numbers", <u>Journal of Econometrics</u>, 4, 4, 115-145.
- Diewert, W. E., 1980, "Capital and the Theory of Productivity Analysis", <u>American</u> <u>Economic Review</u>, 79(5), 260-267.
- Diewert, W. E., 1986, "Index Numbers", Discussion Paper No. 86-33, Department of Economics, University of British Columbia.
- Diewert, W. E., 1989, "The Measurement of Productivity", Discussion Paper No. 89-04, Department of Economics, University of British Columbia.
- Diewert, W. E., 1992, "Fisher Ideal Output, Input, and Productivity Indexes Revisited", Journal of Productivity Analysis, 3, 211-248.

Fare, R., and Chambers, R., 1991, Hicks Neutrality and Multiple Outputs, mimeographed.


- Farrell, M. J., 1957, "The Measurement of Productive Efficiency", <u>Journal of the Royal</u> <u>Statistical Society</u>, Series A, 120(3), 253-281.
- Georganta, Z., 1992, "Errors of Measurement in Output Deflators: The Manufacturing Sector of Greece", Annals of the University of Macedonia (in Greek).
- Georganta, Z., 1993, "Total Factor Productivity in the Greek Agricultural Sector", Discussion Paper, Athens, KEPE.

- Grosskopf, S., 1993, <u>Efficiency and Productivity</u>, in Fried, H.O. et al. eds., The <u>Measurement of Productive Efficiency Techniques and Applications</u>, Oxford University Press, 160-194.
- Hauer, J. H., and Yee, J., 1992, "Morrison's Measure of Capacity Utilization, A Critique", Journal of Econometrics, 52, 403-406.
- Hulten, C. R., 1986, "Productivity Change and Capacity Utilization, and the Sources of Efficiency Growth", Journal of Econometrics, 33, 31-50.
- Hulten, C. R. (1990), <u>Measurement of Capital</u>, in Berndt, E. R., and Triplett, J. E., eds., <u>Fifty Years of Economic Measurement</u>, 119-152, NBER, Studies in Income and Wealth, 54.
- Harper, M. J., and Gullickson, W. (1989), "Cost Function Models and Accounting for Growth in U. S. Manufacturing 1949-1986", Paper presented at the NBER Summer Institute.
- Jorgenson, D. W., and Griliches, Z., 1967, "The Explanation of Productivity Change", <u>Review of Economic Studies</u>, 34, 249-283.
- Jorgenson, D. W., and Griliches, Z., 1972, <u>Issues in Growth Accounting: A Reply to</u> <u>Edward F. Dennison</u>, Survey of Current Businesses, 55, 5, Part ii, 65-94.
- Kendrick, J., 1961, Productivity Trends in the United States, Princeton University Press, NBER.
- Levhari, E., Kleiman, E., and Halevi, N., 1966, "The Relationship between two Measures of Total Productivity, <u>Review of Economics and Statistics</u>, 48(3), 345-47.
- Mark, J. A., and Waldorf, W. H., 1983, "Multifactor Productivity: A New BLS Measure", <u>Monthly Labor Review</u>, December, 3-15.
- Morrison, C.J., 1986, "Productivity Measurement with Non-static Expectations and Varying Capacity Utilization: An Integrated Approach", <u>Journal of Econometrics</u>, 33, 51-74.
- Morrison, C., and Diewert, W. E., 1990, "New Techniques in the Measurement of Multifactor Productivity", Journal of Productivity Analysis, 1(4), 267-286.
- Skountzos, T., and Mattheou, G., 1991, "Measurement of the Capital Stock of the Greek Economy", Internal Document, Athens, KEPE.
- Solow, R., 1957, "Technical Change and the Aggregate Production Function", <u>Review of</u> <u>Economics and Statistics</u>, 39(3), 213-320.
- Theil, H., 1967, Economics and Information Theory, North Holland.
- Thirtle, C., and Bottomley, P., 1992, "Total Factor Productivity in UK Agriculture, 1967-90, <u>Journal of Agricultural Economics</u>, 43, 3, 381-400.

IN THE SAME SERIES

- No 1 G. Alogoskoufis, <u>Competitiveness</u>, <u>Wage Rate Adjustment and Macroeconomic Policy</u> <u>in Greece</u>. Athens, 1990 (in Greek).
- No 2 L. Athanassiou, <u>Adjustments to the Gini Coefficient for Measuring Economic</u> <u>Inequality</u>. Athens, 1990.
- No 3 J. Dutta and H. Polemarchakis, <u>Credit Constraints and Investment Finance: Evidence</u> <u>from Greece</u>. Athens, 1990.
- No 4 C. Kanellopoulos, <u>The Underground Economy in Greece: What Official Data Show</u>. Athens (in Greek 1990 - in English 1992).
- No 5 N. Antonakis and D. Karavidas, <u>Defense Expenditure and Growth in LDCs The Case</u> of Greece, 1950-1985. Athens, 1990.
- No 6 J. Geanakoplos and H. Polemarchakis, <u>Observability and Constrained Optima</u>. Athens, 1992.
- No 7 L. Athanassiou, Distribution Output Prices and Expenditure. Athens, 1992.
- No 8 N. Christodoulakis, <u>Certain Macroeconomic Consequences of the European</u> Integration. Athens, 1992 (in Greek).
- No 9 V. Rapanos, <u>Technological Progress</u>, Income Distribution and Unemployment in the <u>less Developed Countries</u>. Athens, 1992.
- No 10 V. Rapanos, Joint Production and Taxation. Athens, 1992.
- No 11 D. Maroulis, <u>Economic Analysis of the Macroeconomic Policy of Greece during the</u> <u>Period 1960-1990</u>. Athens, 1992 (in Greek).
- No 12 C. Kanellopoulos, Incomes and Poverty of the Greek Elderly. Athens, 1992.
- No 13 G. Agapitos and P. Koutsouvelis, <u>The VAT Harmonization within EEC: Single Market</u> and its Impacts on Greece's Private Consumption and Vat Revenue. Athens, 1992.
- No 14 C. Carabatsou-Pachaki, <u>Elaboration Principles/Evaluation Criteria for Programmes</u>. Athens, 1992 (in Greek).
- No 15 C. Carabatsou-Pachaki, <u>Reforming Common Agricultural Policy and Prospects for</u> <u>Greece</u>. Athens, 1992 (in Greek).
- No 16 P. Paraskevaides, <u>Effective Protection, Domestic Resource Cost and Capital Structure</u> of the Cattle Breeding Industry. Athens, 1992 (in Greek).
- No 17 Cl. Efstratoglou, <u>Export Trading Companies: International Experience and the Case of</u> <u>Greece</u>. Athens, 1992 (in Greek).

- No 18 C. Carabatsou-Pachaki, Rural Problems and Policy in Greece. Athens, 1993.
- No 19 St. Balfoussias, <u>Ordering Equilibria by Output or Technology in a Non-linear Pricing</u> <u>Context</u>. Athens, 1993.
- No 20 St. Balfoussias, <u>Demand for Electric Energy in the Presence of a two-block Declining</u> <u>Price Schedule</u>. Athens, 1993.
- No 21 P. Paraskevaides, <u>Regional Typology of Farms</u>. Athens, 1993 (in Greek).
- No 22 P. Paraskevaides, <u>Evaluation of Regional Development Plans in the East Macedonia-</u> <u>Thrace's and Crete's Agricultural Sector</u>. Athens, 1993 (in Greek).
- No 23 C. Eberwein and Tr. Kollintzas, <u>A Dynamic Model of Bargaining in a Unionized Firm</u> with Irreversible Investment. Athens, 1993.
- No 24 P. Paraskevaides, <u>Income Inequalities and Regional Distribution of the Labour Force</u> <u>Age Group 20-29</u>. Athens, 1993 (in Greek).
- No 25 A. Gana, Th. Zervou and A. Kotsi, <u>Poverty in the Regions of Greece in the late 80's</u>. Athens, 1993 (in Greek).
- No 26 Z. Georganta, <u>The Effect of a Free Market Price Mechanism on Total Factor</u> <u>Productivity: The Case of the Agricultural Crop Industry in Greece</u>. Athens, 1993.
- No 27 H. Dellas, <u>Recessions and Ability Discrimination</u>. Athens, 1993.
- No 28 Z. Georganta, <u>Accession in the EC and its Effect on Total Factor Productivity Growth</u> of Greek Agriculture. Athens, 1993.
- No 29 H. Dellas, <u>Stabilization Policy and Long Term Growth: Are they Related</u>? Athens, 1993.
- No 30 Z. Georganta, <u>Technical (In)Efficiency in the U.S. Manufacturing Sector, 1977-1982</u>. Athens, 1993.
- No 31 P. Paraskevaidis, <u>The Economic Function of Agricultural Cooperative Firms</u>. Athens, 1993 (in Greek).
- No 32 Z. Georganta, <u>Measurement Errors and the Indirect Effects of R & D on Productivity</u> <u>Growth: The U.S. Manufacturing Sector</u>. Athens, 1993.
- No 33 C. Carabatsou-Pachaki, <u>The Quality Strategy: A Viable Alternative for Small</u> <u>Mediterranean Agricultures</u>. Athens, 1994.
- No 34 E. Petrakis and A. Xepapadeas, <u>Environmental Consciousness and Moral Hazard in</u> <u>International Agreements to Protect the Environment</u>. Athens, 1994.

